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Abstract

In this report we examine two existing commercial parallelizing code
restructurers: the CRAY Autotasking? facility and Kuck and
Associates’ KAP/CRAY. In particular we measure their ability to
vectorize and parallelize 25 scientific benchmarks for a CRAY Y-MP
supercomputer. We measure the overall code performance, the
speedup gained by parallelizing codes with these products, and the
overhead used in the parallel execution of each benchmark.

Introduction

Many different ideas about the abilities of parallelizing tools have
been put forward over the years. Some claim that existing programs
are inappropriate for parallel execution because the programming
model used (the Von Neumann model) is inherently sequential, and
such codes should be rewritten using either languages designed to
express parallelism, or sequential languages with parallel extensions
added. Others claim that the codes themselves are adequate, and
that code restructuring tools will be able to provide the needed
parallelism without the expense of relearning programming
techniques and rewriting applications.  Still others think that the
problem of parallelizing existing codes is not impossible, but it is too
complex for automatic tools. For them, interactive code restructuring
tools seem to be the way to go.

! This work was supported by NASA Contract No. NAS2-12961 while the authors
were employed by Computer Sciences Corporation under contract to the
Numerical Aerodynamic Simulation Division at NASA Ames Research Center.
2 UNIX is a trademark of AT&T. CRAY, CRAY Y-MP, CFT77, CF77, Autotasking,
and UNICOS are trademarks of Cray Research, Inc.



In this report we explore the second assertion, that is, that existing
"dusty deck" programs contain sufficient parallelism, at least for
moderately parallel machines, and that it is reasonable to expect a
sophisticated compiler to find it. To examine this question, we
compare the performance of two of the most sophisticated
commercially available code restructurers: CRAY fpp, and Kuck and
Associates KAP/CRAY. Performance is measured on a parallel vector
supercomputer—an 8-processor CRAY Research, Inc., Y-MP.

Both tools were designed to be used either as automatic code
restructuring tools, or as "batch mode" restructurers. We make no
attempt to evaluate either tool as a batch tool, that is, we do not
manually improve the code based on what the restructurer was or
was not able to do. We put all benchmarks through one or both
parallelizers and compile the result without further modification.
The only exception to this rule is that we correct errors when the
restructured code fails to execute correctly. All vectorization and
parallelization (CDIR and CMIC) directives originally in the
benchmarks were also removed prior to their use.

Benchmarks were selected from both public sources and sources
private to NAS. The benchmarks reflect as fair a representation of
production codes as possible. The public codes include the Perfect
Benchmark Suite [1], Livermore Loops, and the NAS Kernels.

Hardware Environment

All codes were executed on a CRAY Research, Inc., Y-MP.
Benchmarks were executed in dedicated time, that is, no other
programs were allowed to use the machine while timings were
taking place. In this way no external factors, such as memory bank
conflicts with other programs, were allowed to interfere with
benchmark performance. In addition, all intermediate I/O was sent
to the Solid-State Device (SSD) instead of rotating storage, to reduce
the impact of I/O on performance. Important Y-MP hardware
characteristics are summarized in Table 1. CPU functional units are
described in Table 2, and Y-MP register structure is given in Table 3.
A more complete description of the Y-MP hardware system may be
found in [2].



Number of CPUs:
Clock Period:
Instruction Buffer Size:

Memory size:
Memory access time:

Memory bank cycle time:
Number of memory banks:

Number of memory ports/CPU:

Solid-State Device:

8

6.0 ns

512 16-bit parcels

(4 buffers)

128 million 64-bit words
(2 ** 30 bytes)

17 clock periods (107 ns)
5 clock periocds (30 ns)
256

4 (2 read, 1 write, 1 I/0)
256 million words

200 Mwords/sec transfer
(4 ports @ 50 Mw/s each)

Table 1 — Y-MP Hardware Features

Address Functional Units

Scalar Functional Units

Vector Functional Units

Vector/Scalar Functional Units

Add

Multiply

Integer Add

Shift

Logical
Population/Parity/Lead 0
Integer Add

Shift

Logical (2)
Population/Parity
Floating Point Add
Floating Point Multiply
Reciprocal Approximation

Table 2 — CPU Functional Units

Address (3)
Intermediate Address (B)
Vector (V)

Scalar (8)
Intermediate Scalar (T)

8 32-bit Registers

64 32-bit Registers

8 Registers of 64 elements
each, 64 bits per element
8 64-bit Registers

64 32-bit Registers

Table 3 — Y-MP Register Structure
Software Environment

All benchmarks were written in Fortran for a serial vector
supercomputer.  Translation from serial code to parallel code was
performed by CRAY fpp, or Kuck and Associates KAP/CRAY, or both.
Benchmarks were translated from Fortran code with embedded
microtasking directives to Fortran with calls to the CRAY parallel
library by the utility fmp. The resulting code was then compiled by



Fortran to Microtasked Fortran CRAY fpp 4.0.1
KAP/CRAY 1.01
Microtasked Ftn to parallel code CRAY fmp 4.0.1
Fortran Compiler CFT77 4.0.1
Operating System UNICOS 5.1.10
Libraries UNICOS 5.1.10
Table 4 — Software System Versions

the CRAY cft77 Fortran compiler. The version numbers for each of
the products are given in Table 4.

The Microtasking parallel environment is supported through special
calls to the CRAY parallel library. Microtasking supports a model of
parallel programming known as Single Program, Multiple Data, or
SPMD. The idea is that when a program is executed each process will
execute the same program, but on different data. Also, each process
executes independently of other processes so they need not take the

same amount of time to execute, nor even execute the same sequence
of instructions.

At the beginning of the execution of a parallel program, slave
processes are created and placed in a "parked" state. While in this
state they accrue "semaphore wait time." Other processes can use
the CPUs while the slaves are in this state, but the slaves have a high
priority when they are unparked and return to the run queue. Once
running, the slaves resume accumulating "user time."

Parallel regions in the program are placed within CMIC$ PARALLEL
and CMIC$ END PARALLEL directives. The directives may be
conditional or unconditional. When a parallel region is entered, the
master process unparks the slave processes, which are returned to
the run queue. Each process then executes the same segment of code
in parallel with the others. If the code segment is a parallel loop,
iterations of the loop are divided into blocks which are distributed
across the available processes. Iteration distribution is done one
iteration per processor. At the end of the parallel region, all slave
processes are parked once again. Table 5 summarizes the overhead
involved with managing the parallel execution for both master and
slave processes in clock periods (CPs), and the rough equivalent in
instructions.



MASTER:

Get CPUs 50-100 msec (2-4 million instr.)
Unpark slaves 175 CPs ( 44 instructions)
Get Iteration 25 CPs ( 6 instructions)
END PARALLEL 30 CPs ( 7 instructions)
SLAVE:
Unpark Slaves 200 CPs ( 50 instructions)
Get Iteration 25 CPs ( 6 instructions)
END PARALLEL 30 CPs ( 7 instructions)
Repark Slaves 75 CPs { 19 instructions)

Table 5 — Parallel System Overhead

CRAY Fpp And KAP/CRAY

The set of compiler options used to compile a program can strongly
affect its performance. In this study we had to trade off aggressive
parallelization against reliability. = Aggressive parallelization held
opportunities for greater speedups, but also carried the risk of not
functioning for all of the codes. As a compromise we used the most
aggressive options that also worked for a reasonable majority of the
codes. For fpp we selected -Wd-e46ijt except where noted
otherwise. This selection enables fpp switches 4, 6, i, j, and t, which
mean:

4 Asserts that private array initial values are not needed.

6 Enables automatic inlining of routines that are less than
50 source lines in length, and do not call other routines.

1 Enables inner loops with variable iteration counts to be
autotasked, if analysis warrants it.

j Replaces matrix multiplication loops with a library call.

t Enables aggressive loop exchanges to take place.

-

We used the default command line switch settings for KAP. The
default settings were as follows:



MV=3 Sets the minimum vector length to 3.

MVC=1000 Sets the minimum amount of work in a loop that
KAP will execute in vector-concurrent mode to
1000 iterations. Two-version loops are created if
the loop bounds are unknown. No two-version
loops are generated when mvc=-1 is used.

MC=950 Sets the minimum amount of work in a loop that
will be concurrentized. Again, two-version loops
are generated when loop bounds are unknown.

P

0 When a program is concurrentized, it is always
compiled for an unknown number of processors.

DUST=3 Loop re-rolling is enabled, and certain IF/DO code
transformations are performed.

LM=21000 Sets a crude upper limit on the amount of work
KAP will perform in trying to optimize a loop.

O= KAP vectorizes any loop where it is legal to do so.
' Loop interchanges may be applied, even to
triangular loops, and reductions are recognized.
Enhanced dependence analysis is used, and KAP
attempts to break dependence cycles. Lifetime
analysis of variables is performed. Array
expansion is performed.

UR=16 Loops are unrolled by at most 16 iterations.

UR2=40 Same as UR, but the limit is a measure of "work"
within the loop rather than the number of
iterations.

NOEXPAND Local subroutine inlining is inhibited. Using x=a
allows KAP to inline some subroutines and
functions. Exd=-1 restricts inline expansion to
routines which do not contain function or
subroutine references.

Vectorization and parallelization tools rely heavily on techniques for
code analysis, primarily dependence and loop analysis, and on code



transformations. Loop analysis classifies the type of loop and the
existence of dependence cycles between statements. This
information is used in determining which loop transformations will
be legal and beneficial.

Dependence analysis determines whether loop iterations can be
executed independently, or whether reordering them will cause the
program to execute incorrectly. Comprehensive dependence analysis
for all possible array subscript expressions is very time consuming
(it is an NP-Complete problem), and therefore must be approximated.
Accurate dependence analysis at times requires information about
how the program is used, i.e., runtime information. A third factor
which may inhibit an accurate analysis is that a dependence may
truly exist within a program, but the algorithm in which it occurs

may be insensitive to its violation and thus the dependence could be
ignored.

Once the dependence and loop analyses have been done, loop
optimizations may take place. Generally the optimizations are
different types of loop transformations which enhance vectorization
or parallelization. Many of the code transformations performed by
fpp and KAP will be described below. A complete description of the
fpp code transformation techniques may be found in [3]. Code
transformations which KAP uses are described in [4]. A summary of
each may be found in Table 6.

Benchmarks

As mentioned before, benchmarks used in this study were selected
from NAS sources and the Perfect Benchmarks [1]. NAS private
codes include 2-D and 3-D aerospace simulation codes, structural
codes, and synthetic benchmarks either developed here or in
common use at the NAS facility. NAS private codes include seven
Navier-Stokes computational fluid dynamics (CFD) codes, of which
four involve chemistry, and one solves a supersonic problem. Of the
remaining NAS codes, one solves a structural problem for a high-
Mach air frame, and two are synthetic FFT codes. A detailed
description of each benchmark is given in Table 7.

Benchmark memory requirements vary from as little as 110 Kword
to as large as 54 Mword. The distribution of memory requirements
for the various benchmarks is shown in Figure 1. A detailed
summary of benchmark characteristics is given in Appendix A.



Code Transformation fpp Kap

Reduction recognition yes yes
Recurrence recognition yes yes
Two version loops yes yes
Vectorize IF loops yes yes
Partial loop vectorization (fission) yes yes
Loop collapse ves yes
Loop fusion yves no
Loop interchange ves yes
Loop peeling yes yes
Loop unrolling ves yes
Loop rerolling yes yes
Scalar expansion yes yves
Code inlining yes yes

Table 6 — Fpp And KAP Code Transformations

Number of
Programs
<1 MW 1-5 5-10 > 10 MW
Figure 1 — Distribution of Benchmark Memory Requirements

Total number of floating point operations vary from 58 million to 78
billion operations. Most of the NAS codes have between 10 and 25
billion floating point operations, while the Livermore Loops,
NASKERN, and all but one of the Perfect Benchmarks are much
smaller than that. The largest code is NAS10, the smallest is SPICE.

Given the available floating point units on the Y-MP, the exact mix of
floating point additions, multiplications, and reciprocals is critical to
achieving maximum performance. If there are significantly more
operations of one type than another, some floating point functional
unit will be left with no work while another will have an excess.
More precisely, each functional unit should have enough work to fill
the same number of clock periods if it is to achieve maximum
overlap. One should note, however, that scheduling conflicts and
program dependences can further inhibit overlap even when the
number of each type of operation is balanced. The next figure shows



NASO1

NASO02

NASO3

NASO4

NASO5

NASO6

NASQ7
8
NASO08

9
NASO09

10
NAS10

11
MFLOP90

12
NASKERN

is a general purpose 3-D fluid flow solver for high angle-
of-attack problems. It uses an implicit finite difference
scheme for solving the viscid, unsteady flow about a sphere.
It employs approximate factorization with flux-split
differencing in the solution.

simulates the incompressible laminar fluid flow around a
single post mounted between two plates. The Navier-Stokes
equations are solved in three dimensions by an approximate
factorization algorithm, using pseudocompressibility to
solve the pressure field.

computes the decimal expansion of the mathematical constant
n. The core of this program uses highly vectorizable fast
Fourier transforms (FFTs).

repeatedly computes forward and reverse FFTs on pseudorandom
data. The FFTs are highly vectorizable. With hand-inserted
vectorization directives, both NASO3 and NAS04 are capable
of 150 to 160 million floating point operations per second
(MFLOPS) on a single Y-MP CPU.

gives a time-accurate 3-D simulation of the mixing of
reactive fluids. Pseudospectral methods are used to compute
the derivatives, and fluid flow incompressibility is
modified by adding terms to account for variable density in
the fluid.

gives a time-accurate solution to a 3-D Navier-Stokes
problem. The code sweeps entire planes, performing a
Gaussian elimination of conserved quantities at each cell.

uses a fast, accurate, Choleski method for solving 16,000
linear equations. The test case used is the structural
analysis of an air frame under high-Mach conditions.

solves a 2-D Navier-Stokes problem with terms included to
account for reactive chemistry.

solves a supersonic 2-D Navier-Stokes problem.
solves a 2-D Navier-Stokes problem involving chemistry.

executes 24 common synthetic Fortran kernel loops. The
loops range in complexity from easily vectorized, to very ~
difficult. (This code is also known as the Livermore
Loops.)

7 kernel routines often used in CFD calculations. They
include an MxM matrix multiply, a 2-D complex FFT, Choleski
factorization, a vectorized block tri-diagonal solver,
Gaussian elimination, a vortex generator, and a penta-
diagonal matrix solver.

Table 7 — Benchmark Descriptions



13 a fluid dynamics code used to study air pollution.

AMD Its computational kernel relies heavily on FFTs.

14 solves a 2-D supersonic reentry fluid dynamics problem using
ARC2D a sparse linear system solver and a fast elliptic solver.

15 a molecular dynamics simulation of a nucleic acid. This
BDNA code uses an ordinary differential equation (ODE) solver.

16 performs a structural dynamics analysis for an engineering

DYFESM design problem. It uses a sparse linear system solver, a
nonlinear algebraic system solver, and an ODE solver.

17 solves a 2-D transonic flow fluid dynamics problem. Its

FLOS2 computational kernel uses a multigrid scheme with an ODE
solver.

18 performs a molecular dynamics simulation of liquid water,

MDG using an ODE solver.

19 solves a signal processing problem involving seismic

MG3D migration. The code uses both FFTs and ODE solvers.

20 2-D fluid dynamics simulation of a section of ocean. This

OCEAN solver uses primarily FFTs.

21 lattice gauge solution to a quantum chromodynamics problem.

QCD A Monte Carlo scheme is used in the solution.

22 another fluid dynamics code—this code performs a weather

SPEC77 simulation using FFTs and rapid elliptic problem solvers.

23 simulates electronic circuits using sparse linear solvers
SPICE and ODE solvers.
24 another signal processing code—this code performs missile
TRACK tracking using convolution as the primary mathematical

technique.
25 uses integral transforms to solve a 2-electron problem from
TRFD molecular dynamics.

Table 7 — Benchmark Descriptions (cont.)

the percent of clock periods occupied by floating point adds,
multiplications, and reciprocals. A full divide requires three
multiplies and a reciprocal. Figure 2 clearly shows that these
benchmarks are fairly well balanced as far as the additions and
multiplies are concerned, but the reciprocal unit is somewhat
underutilized.

10



80 T B Additions
0O Multiplications
70 + Reciprocals

60 +
50 +

R

1234567829 10111213141516171819202122232425
Benchmark

ALt RAAA AR A AARARANAAAARS A8

Figure 2 — FLOP Balance Normalized By CPs

Benchmark 1/0O requirements were very low, with only a few
exceptions.  Sixteen benchmarks required less than 1 Mbyte, four
used between 1 and 10 Mbytes, and only one (MG3D) used more
than 100 Mbytes of I/0. As mentioned earlier, all I/0 was mapped
to the SSD rather than going out to a rotating disk. Using the SSD
reduced the actual time spent in I/O to a minimum,

The benchmarks showed a wide mix of performance when compiled
with default vectorization (Figure 3). The codes that have the best
performance (over 100 MFLOPS) are all CFD codes that do not use
FFTs as solvers (including both 2-D and 3-D codes), kernels from CFD
codes (NASKERN), and a molecular dynamics code which employs an
ODE solver (BDNA). The FFT based codes, among others, have a
relatively moderate level of performance.

-

Compilation Expense

Code optimizations can only come at the expense of code analysis.
Sometimes the analysis is inexpensive, sometimes it is not. The
analysis necessary for vectorization is generally a subset of that
required for parallelization. In order to provide a basis for
comparison, Figure 4 gives the compilation times, in seconds, for each

11
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Figure 3 — Default Vectorization Performance

of the benchmarks using only the default CRAY optimizations. All
program compilation times are given in Appendix B.

As can be seen from the chart, all codes compiled fairly quickly, even
the larger codes like QCD (number 23 in the chart). The question is
whether enhanced vectorization or parallelization adds significantly

100 +
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60+ =
50 +
40 T [ ] x|
30+
20 4 s

10 + . - e

0 } } } 4 1

0 5 10 156 20 25

a3 o0 0o O

Benchmark

Figure 4 — Compile Times with Default Vectorization
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to the compile time. In a research environment like NAS, codes are
constantly being modified and recompiled. Thus features that take
too long will go unused unless they also significantly shorten the
execution time. The following charts show how enhanced
vectorization and parallelization increase the compilation time. The
shortened execution time will be treated in the next two sections.

The next chart (Figure 5) gives the ratio of enhanced vector compile
times (Cv) to default compile times (Cd). From the chart it is clear
that fpp adds little to compilation times (about 23%), but KAP/CRAY
adds significantly (112% on the average). In one case (NAS09) KAP
adds over 350%, boosting the compile time from 38 to 173 seconds,
or about three minutes. Even though this is much more time, it is not
an intolerable amount of time to wait for a compilation.

Figure 6 shows the expense of compilation using automatic
parallelization. The results are similar but more exaggerated than
for enhanced vectorization, since the analysis for parallelization is
more extensive. For parallelization the average compilation time for
fpp is about 3.2 times the default compilation time, while the
average KAP time is only a little worse than fpp (3.78). The range
for parallel compiles, however, is much larger. Fpp ranges from 48%
to 429% more time than default vectorization, while KAP ranges from
88% more to 600% more compile time. The longest KAP compile time
is just under 400 seconds (6.5 minutes), which could be tiresome to
wait for if it happened too frequently.

W fpp
5.00 + : O KAP
& KAP4f
4.00 4 e
, @
3.004 o
Cv/Cd o . . a .t e LO' s
2007y, o, 6 9 " Oso ° od, god
Ll gu “.l| a®gum 2 e _Egmaw -
1.00 d= L] . T ] .. a ]
0.00 } t i { —
0 5 10 15 20 25
Benchmark
Figure 5 — Enhanced Vector Compilation Time Expense

13



m fpp
8.001 . E m f
7.00 4 +iPp

6.00 1
5.004+ ° , v a.

Cp/Cd 4.004 g
3.00 4 .

2.00 + o
1.00 +

0.00 i ; i } i

0 5 10 15 20 25

Benchmark

T
Ce

Om
O n o
[ ]

Figure 6 — Parallel Compilation Expense

Enhanced Vectorization

The CRAY Fortran compiler, cft77, vectorizes some types of loop
constructs, but in order to keep the compilation time to a minimum it
generally uses only those optimizations that are both fast and
frequently effective. Fpp, on the other hand, performs a more
extensive analysis and therefore has greater potential for improving
code performance. Figure 7 shows the performance of all
benchmarks, in millions of floating point operations per second
(MFLOPS), after enhanced vectorization has been used. Appendix C
contains performance information for each of the benchmarks under
both default and enhanced vectorizations.

From the chart it appears that there is little change in benchmark
performance. Those codes that do well without enhanced
vectorization also do well with it, and those that do poorly without
are not much improved. Figure 8 summarizes the actual speedups
(default vectorization elapsed time divided by enhanced
vectorization elapsed time) observed for the individual benchmarks.

Figure 8 seems to indicate that the speedups cluster about 1.00 (i.e.,
no speedup at all), and indeed this is the case. The average speedup
achieved by fpp is 1.02, which is not as good as one might expect.
Fpp gained some improvement for 12 of the 25 codes, or just less
than half of the benchmarks. We were hoping for at least 25%
improvement but none of the codes did even that well, although two

14
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Figure 7 — Enhanced Vector MFLOPS

codes were close. The median speedup was 1.00, the minimum 0.84
(16% slower than no enhanced vectorization), and the best speedup
was 1.24. The KAP average was only slightly better but the median

was the same as fpp's. Statistics for fpp, KAP, and both are
summarized in Table 8.

2.00 +
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S
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Figure 8 — Speedup from Enhanced Vectorization
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fep K&P Roth

Codes Improved 12 10 17
Median Speedup 1.00 1.00 1.03
Average Speedup 1.02 1.03 1.09
Minimum Speedup 0.84 0.89 0.83

Maximum Speedup 1.24 1.53 1.96
Table 8 — Enhanced Vectorization Speedup Statistics

Combining KAP and fpp had some interesting results. The minimum
speedup was 0.83—worse than either fpp or KAP alone, but all other
statistics showed some improvement. The median increased to 1.03—
slightly better than either KAP or fpp alone, while the average
speedup was significantly improved. Fully 17 of the 25 codes
showed some improvement, and the best speedup was nearly a
factor of two over the default vectorization. The following chart
(Figure 9) gives the distribution of speedups for fpp only (black
column), KAP only (white column), and both (grey column).

The four codes which benefitted most from enhanced vectorization
used FFTs as a major part of their computation.  Unfortunately, at
least one of the FFTs (NASO4) performed well below what it was
capable of, even with enhanced vectorization. As a separate
experiment, NAS04 was hand optimized by inserting compiler
directives above loops which were known to be vectorizable. In
every case the apparent dependencies were known to be false — no
true dependencies were violated at any time. The elapsed time of

16
N fpp
O KAP
E KAP+fpp
Benchmarks
- — L ;
0.76- 1.01- 1.26- 1.51-
1.00 1.25 1.50 1.75
Speedup
Figure 9 — Enhanced Vectorization Speedup Distribution
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the new code was 89.28 seconds, which corresponds to 160.81
MFLOPS, a speedup of 2.89 over the default compiler optimizations,

or a factor of 2.55 faster than the original code using enhanced
vectorization.

Parallelization

The primary motivation for using parallel processors in scientific
work is to increase the computational power available to a user.
Unfortunately, one's ability to exploit that power depends on the
quantity and granularity of parallelism within the program, and the
overhead one must pay to start, suspend, synchronize, and terminate
parallel tasks. Figure 10 shows the raw performance of each of the
benchmarks using 4 CPUs in its execution. Performance information
for the parallel execution of each of the benchmarks is included in
Appendix C.

If a program has sufficient parallelism one can expect the speedup to
be close to the number of available processors. Figure 11 shows the

speedup obtained by using fpp, KAP/CRAY, and both with four CPUs
in dedicated time.
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Figure 10 — 4 CPU MFLOPS
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The speedup is calculated using enhanced vectorization as the basis
for comparison even though it did not always improve the execution
time. Given symbolically, the n-processor speedup is defined here as

where Tv and Tn are the enhanced vector and n-CPU elapsed times,
respectively.

This figure shows widely scattered speedups for the benchmarks. It
is not too surprising that some codes would parallelize better than
others, nor even that the overhead of attempting to parallelize some
codes would be greater than the benefits, yielding a speedup less
than one. It is valuable to note, however, that many of the codes did
show some improvement: 15 benchmarks compiled with fpp showed
some improvement over enhanced vectorization, 20 improved with
KAP, and 17 improved when both fpp and KAP/CRAY were used.
The benchmark performance statistics for the 4 CPU runs are
summarized in the Table 9. The distribution of speedups is given in
Figure 12.
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fpp Kap Both

Codes Improved 15 20 17
Median Speedup 1.14 1.10 1.07
Average Speedup 1.41 1.42 1.48
Minimum Speedup 0.65 0.91 0.66
Maximum Speedup 2.88 2.90 2.99

Table 9 — 4 CPU Speedup Statistics

The FFT codes which improved significantly under enhanced
vectorization did not improve as much as might be expected under
parallelization. This is in part because even after enhanced
vectorization they were relatively poor performers—under 100
MFLOPS on a single CPU. The improvement seen with 4 CPUs
matches the improvement gained under enhanced vectorization. The
semaphore wait time for these codes is very close to 75%. This
indicates that the improvements did not come from parallelization,

but rather from the enhanced vectorization which is also present
with the parallelization.

The codes which performed well under parallelization were 2-D CFD
codes and one 3-D CFD code that did not use FFTs in their
computational kernel. Each of these codes were in the 100 to 200
MFLOPS range, but the fact that these codes are 2-D CFD codes is
more important than their initial high performance. Other codes
displayed equally high performance under enhanced vectorization
but did not perform as well under parallelization.

12 1
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Benchmarks 6 -

4
2
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1.00 1.50 2.00 2.50 3.00
Speedup

Figure 12 — 4 CPU Speedup Distribution
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A separate experiment was conducted in which NAS04 was hand
optimized, as it was for enhanced vectorization. The result was that
its elapsed time dropped to 51.84 seconds, with 101.43 seconds of
CPU time on 4 CPUs. This corresponds to 276.93 MFLOPS, or more
than 4 times better than any execution without hand optimization.

If one compares the 4-CPU distribution against the enhanced
vectorization speedup distribution, it is readily apparent that they
are similar, in that the majority of the codes show less than a 50%
improvement. They also differ in that a greater number of
benchmarks show an improvement greater than 50% (i.e., a speedup
greater than 1.50). Another difference is that the codes which make
up the high end of vectorized codes are FFTs, where the CFD codes
were improved by parallelization and FFTs were not.

Each of the benchmarks was also run with 8 CPUs to see how the
performance would differ from 4 CPUs. The raw performance (in
MFLOPS) is given in Figure 13. Figure 14 shows the speedup gained
by using 8 CPUs. The statistics are summarized in Table 10, and the
distribution of speedups is given in Figure 15.
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Figure 13 — 8 CPU MFLOPS
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Figure 14 — 8 CPU Speedups

The 8 CPU speedup scatter plot (Figure 14) shows several things of
interest. It shows that the codes which improved the most with 8§
CPUs were the same codes that improved the most with 4 CPUs,
namely, CFD codes. It is also clear that the efficiency is dropping

rapidly with an increasing number of CPUs. Parallel efficiency is
defined as

S, T,
n

En=

nTn

(For example, the 8-CPU efficiency is Tv/(8*Ts8)). The best
efficiencies obtained by the 4 CPU runs were close to 75%, the
equivalent of using 3 out of 4 CPUs. The highest 8 CPU efficiencies
were lower—about 50%, or the equivalent of using 4 CPUs out of 8.
Essentially, we had to double the number of CPUs in order to buy
that additional 25% improvement.
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Parallelism and Overhead

Fpp and KAP/CRAY exploit parallelism found in program loops.
When nested loops are encountered it is generally more effective to
vectorize the inner loops and distribute outer loop iterations across
the available processors. Vectorization should never be sacrificed for
the sake of large grain parallelism, because of the low initial
overhead and the high potential gain vectorization offers. Data
dependencies may interfere with both the vectorization and
parallelization of loops. If the loop is large and highly vectorizable, it
is often parallelizable.

Given the speedup and the number of processors, we can calculate
the effective parallel fraction of a code. Amdahl's Law says that the
n-processor speedup (Sn) is related to the fraction of the operations
which can be performed in parallel (p) and the number of Processors
(n) by the equation

1
S, = p
1-p+n

Amdahl's Law assumes that the parallel operations can be exploited
without incurring any penalty, and the operations are continuous
rather than discrete. In MIMD systems neither assumption is true,
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frp Kap Both

Codes Improved 15 17 17
Median Speedup 1.18 1.06 1.06
Average Speedup 1.59 1.53 1.63
Minimum Speedup 0.64 0.87 0.66
Maximum Speedup 4.24 4.23 4.40

Table 10 — 8 CPU Speedup Statistics

but the assumption of no overhead is most important. The
microtasking library incurs overhead in creating, suspending,
restarting, synchronizing, and terminating parallel tasks. The

overhead incurred within a code will depend on the number of
processors used, and the number, size, and structure of each loop.
Thus Amdahl's Law would have to have a term to account for
parallel overhead which varied with the conditions of execution.
However, if the overhead varies only slightly with the number of
processors, one can at least obtain the effective parallel fraction,
which will give some indication of a code's parallel performance, by
solving Amdahl's Law for p.

n 1 n n

p = 1 - — 1 -
(n-1) (n-1)
Sn y

The next chart (Figure 16) shows the effective parallel fraction for
each of the benchmarks using 4 CPUs. When we report values of
the parallel fraction p for a given program, we will generally present
it as a percentage, e.g., p=0.43 would be reported as 43%. Notice also
that the parallelism is negative if the application is slowed by
parallelization. This can occur when the overhead of initiating and
terminating a parallel task is larger than the benefit gained.

The overhead for n processors is defined here as -

(Usern+Sysn)-(Userv+SysV)

Overhead = 100
(Userv+Sy5;,)
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where User and Sys are the user and system times, respectively, for
the n-CPU parallel runs (n) or the enhanced vector runs (v).
Overhead for the 4 CPU runs is shown in Figure 17.

Loops that vectorize well do so because the iterations, or at least
parts of the iterations, can be executed independently. If there is
enough independent work in these loops, the iterations can be
divided between multiple processors for a net gain in speed. How
much work is "enough" is determined by the overhead involved in
starting up the parallel processors and dividing the loop iterations.
This overhead is in addition to what a serial version of the same
program would do, so it necessarily increases the work load of the
machine.

Very long loops permit the overhead to be amortized over many
iterations, which improves the overall performance of the code. The
lengths of the dominant loops were measured for several codes, and
the results are recorded in Table 11. Loop lengths are measured in
iterations. (Recall that NASO4 is an FFT code, while the others are
CFD codes.) The parallel fraction for NASO4 is from the automatically
parallelized version. The hand optimized version has a parallel
fraction of 55%.
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Figure 16 — % Parallelism in 4 CPU Runs
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The overhead is especially important to the throughput of a machine.
A 100% overhead means that as much time is being spent
maintaining parallelism as is accomplishing useful work. It also
means the throughput could be reduced by 50%. The overhead is
very high for many codes, most of which do not parallelize well. Not
surprisingly, the codes which do parallelize well have low levels of
overhead. If only the high performance codes were used (those with
speedups greater than 2.00), the average overhead would be around
20%. This would reduce the potential throughput by about 17% over
serial execution. This might be acceptable if there are enough idle
CPU cycles, in which case the result could be a shorter average
turnaround time for jobs in the machine.

Code Name Loop Length Barallel Fraction
NASO04 60 5% -
NASO1 100 63 3%
NASKERN 256 42 %
NASO6 1,000 88 %
NASOS8 11,000 81 %
NAS10 26,500 79 %

Table 11 — Loop Lengths and Parallel Fractions
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As mentioned before, the overhead does vary with the number of
CPUs used. Some of the poorly parallelizing codes suffer substantial
increases in overhead when going to 8 CPUs, but that doesn't matter
much since such codes would probably not be used in their parallel
form. The highly parallel codes, however, add approximately 15%
overhead by going from 4 CPUs to 8. The effective parallelism and
overhead for the 8 CPU runs are shown in Figures 18 and 19.

Percent Vectorization

While it is possible, in theory, to parallelize some poorly vectorized
code, no evidence was found in this study that would indicate such
was taking place. This may be because such opportunities might not
exist within the selected benchmarks, or because the tools
themselves might not be set up to do that. While high vectorization
levels seem to be required in order to parallelize a program, it is not
a guarantee of success. Several codes, e.g. NASOS5 and NASKERN, had
higher levels of vectorization than their levels of parallelization
would suggest. (Percent vectorization for each benchmark is
calculated in Appendix D.)
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Figure 18 — Parallelism in 8 CPU Runs
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Figure 20 shows the relationship between percent vectorization and
percent parallelization for the 4 CPU runs. This chart shows that the
effective parallelism is clearly related to the percent vectorization,
although the correlation is not direct. Percent vectorization appears
to be a least upper bound of the percent parallelization, thus it can
be substituted directly into Amdahl's Law to obtain a tight upper
bound on parallel speedup. The parallelism values for the 8 CPU
runs are very nearly the same as for the 4 CPU runs, so no separate

chart is presented. Percent parallelism for each benchmark is given
in Appendix E.

Each of the remaining charts (Figures 21 through 25) emphasize the
high level of vectorization needed for a significant performance. At
the same time they remind us that high vectorization is no guarantee
of good parallel performance. It is a necessary but not a sufficient
condition for parallelization. Figures 21 and 22 show the parallel
speedup as a function of vectorization. Figures 23, 24, and 25 show
the performance in MFLOPS as a function of vectorization. The steep
curve associated with Amdahl's Law can be seen in 24 and 25.
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Compilation Problems

Neither fpp nor KAP were completely free of problems. KAP had
more problems than did fpp, probably because the writers of fpp had
greater access to the system, particularly fmp, the program which
translates microtasking directives into CRAY library calls. All of the
bugs we discovered in both products were annoyances, but could be
tolerated using a simple work around. None were so serious as to
render the product unusable, and all seemed to be fixable with no
more than a moderate amount of effort. Below we give a brief
summary of the bugs we found.

® KAP incorrectly declares CDIR$ SHORTLOOP on some variable
length loops, which may give either incorrect results or a
floating point exception.

® KAP leaves DATA statements within CMIC$ PARALLEL
sections, which causes CRAY Autotasking to fail during
compilation. One might argue that DATA statements may not
legally occur where CMIC directives are allowed, but neither
does KAP flag it as an error. Either moving DATA statements to
the beginning of a routine or flagging them as being out of
place would be acceptable.

® KAP occasionally uses KAP-generated indexing functions or
arrays, but doesn't provide a definition for them. This causes
undefined external references to occur in the program.

® KAP does not always provide SHARED or PRIVATE
declarations for array index variables it introduces into the
program.  Parallel programs are very sensitive to whether
certain variables are private or shared, and fmp is not able to
decide which mode is correct.

® Fpp does not always distinguish between comments that are
compiler directives and those that are not. As a result, fpp
sometimes rearranges microtasking directives which should be
left in place.

Conclusions

Using fpp to enhance the vectorization does not significantly slow
down the compilation process. It added, on the average, only 23% to
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the compilation times of our benchmark suite. On the other hand,
neither does it significantly improve its performance. The FFT codes
improved the most, but the best improvement was only 24%.

In contrast, using KAP for enhanced vectorization does slow program
compilation down considerably, adding on the average 112%, and
sometimes as much as 350% to the compilation time. To its credit, it
does speed up FFTs significantly. In two cases, FFT benchmarks were
improved by approximately 50%. Combining fpp with KAP brought
about an even greater improvement—almost 100%. Like fpp, though,
non-FFT codes did not noticeably improve.

Both KAP and fpp substantially slowed the compilation time when
they were used for automatic parallelization, and KAP was usually
only a little slower than fpp. Both improved the performance of CFD
codes, especially the 2-D CFD codes. Used together, the improvement
was a factor of 2.5 to 3.0 using 4 CPUs, and from 2.5 to 4.5 on 8 CPUs.

Neither fpp nor KAP had a significant performance edge over the
other.

Neither KAP nor fpp were able to uncover sufficient parallelism in
CFD codes for highly parallel execution. Parallelism ran about 60% to
90% which would correspond to maximum speedups of 2.5 to 10,
given 1) an infinite supply of parallel hardware, and 2) no increase
in the overhead to use it. As good as this is, we anticipate far greater
levels of parallelism (95% to 99.9%) will be needed to take advantage
of future parallel hardware. The overhead required to maintain
parallel execution was relatively large, and reducing this might
significantly improve these values.

Parallel efficiency was much higher for 4 CPU runs (75%) than for 8
CPU runs (50%), primarily due to Amdahl's Law and the modest
amount of parallelism found in the programs. It is a corollary to
Amdahl's Law that the efficiency will always be higher for the 4 CPU
runs than the 8 CPU runs. It is because of the moderate levels of
parallelism that the parallel efficiency differs so greatly.

Overhead from parallelization was high, to the extent that
widespread parallelization could significantly reduce a system's
throughput in a production environment. Overhead was especially
high for codes that did not parallelize well. Overhead for the CFD
codes on 4 CPUs averaged approximately 15% to 20%. On 8 CPUs the
average increased to about 25%.
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Program vectorization and Amdahl's Law determine an upper bound
on speed improvements due to parallelization. Parallelized codes are
highly vectorized codes, but a high level of vectorization does not
guarantee that a code will also parallelize. The need for high levels
of vectorization grows dramatically as the number of CPUs increases.

Because the levels of parallelism KAP and fpp found in even the best
codes were much lower than desired, we conclude that such tools will
probably not be able to find sufficient parallelism without human
assistance. In our opinion the ideal tool for parallelizing Fortran
programs would have:

® Extensive dependence analysis — this has been a traditional
area of focus, and allows the tool to distinguish, albeit
imperfectly, between code which is parallelizable and code that
must remain sequential. Both KAP and fpp seem to do quite
well at this. The most obvious problem was that in order to
correctly determine that certain dependences were false, both
tools would have needed information about the program's
runtime behavior, or about its algorithms. More extensive
analysis might help some, but it can't use information that isn't
there without a programmer's help.

® Extensive code transformation vocabulary — another area of
traditional focus, it gives the tool the ability to improve the
level of parallelism or the granularity of parallelism while
retaining the original meaning of the program. Again, KAP and
fpp seem to do well at this.

® Runtime statistics — allows the tool to steer the user towards
the most heavily used, and therefore most profitably optimized
sections of code. It also could retain program traces and
branch probabilities, which might further assist in choosing
appropriate code restructuring optimizations. -

® Queriable interface — allows the tool to display only the
information that the user wants to see, instead of all
information that might be relevant. It would be beneficial if
the interface were sufficiently robust to be able to identify
user supplied patterns in the code, array indices, and variable
usages.
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® Analysis facility — indicates the circumstances under which
perceived dependences are false so the programmer can decide
whether that section of code is safely parallelizable.

® Suggestion facility — makes optimization and parallelization
suggestions to the user, and indicates the circumstances under
which the suggestions are valid. This should include an

understanding of the vectorization and parallelization overhead
involved, letting the user know when the section of code being

parallelized may not have sufficient work to overcome the
expected cost.
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Appendix A — Benchmark Characteristics

This appendix lists several characteristics for each of the
benchmarks. They are:

Source lines — number of text lines in the original program,
including comments and blank lines. No compiler directives
are included.

Size — total program memory requirements, in megawords
(2**20 64-bit words), as obtained by compiling the program for
sequential execution by the CRAY Fortran compiler, cft77.
Memory size was measured by the UNICOS utility "size".

Floating point adds, multiplies, and reciprocals — total
operations in each category as measured by the Y-MP
hardware performance module (group O0).

Data transferred — total program I/O requirements including
all raw and formatted read and write operations. The units are
megabytes.
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Benchmark Source Size Floating Point Floating Point Floating Point Floating Point | Data Transferred
Name Lines (MW) Adds Multiplies Reciprocals Operations Mbytes

1 |NASO1 6,388 53.24 8,562,115,068/ 11,752,400,033 620,432,216] 20,934,947,317 0.010
2 |NASO02 4,851 6.21 3,320,0889,324 4,801,001,058 5,764,488,705| 13,885,579,087 0.003
3 _|NASO03 2,198 1.73 7,647,160,394 5,594,873,334 2,346,221] 13,244,379,949 0.004
4 |NAS04 731 0.41 7,680,489,244 6,674,198,082 2,186,073| 14,356,873,399 0.005
5 INASO05 3,419 23.84] 16,550,588,003] 11,652,969,460 50,241,896] 28,253,799,359 0.026
6 [NASO06 8,212 9.23 4,598,013,650 7,086,317,986 404,732,247| 12,089,063,883 9.339
7 _|NAS07 721 2.14 702,371,912 722,997,685 113,834 1,425,483,431 24.609
8 |NASO8 4,788 7.11] 18,656,174,913| 28,279,511,154 3,829,361,830| 50,765,047,897 54.614
9 |NASO09 4,848 0.86 6,014,085,825] 10,354,608,536 1,309,310,052] 17,678,004,413 1.182
10 |NAS10 8,880 7.07| 33,446,177,882| 41,125,391,455 3,115,375,229] 77,686,944,566 57.298
11 |MFLOP90 7,338 0.21 146,095,915 79,786,453 4,663,693 230,546,061 0.045
12 |NASKERN 1,074 0.41 1,080,724,151 1,116,588,777 32,395,031 2,229,707,959 0.002
13 |ADM 6,137 0.25 263,824,288 240,133,023 23,057,175 527,014,486 0.235
14 |ARC2D 3,996 1.15 816,061,635 1,302,141,170 132,689,166 2,250,891,971 1.212
15 |BDNA 3,980 0.36 563,103,666 521,838,352 92,161,725 1,177,103,743 4.577
16 |DYFESM 7,840 0.11 392,624,570 144,699,124 42,488 537,366,182 0.058
17 |FLO52 2,019 0.32 318,684,388 291,920,561 31,327,690 641,932,639 0.12¢9
18 [MG 1,270 0.11 2,153,971,939 1,485,467,393 264,938,807 3,904,378,139 0.052
19 [MG3D 2,792 0.57 6,694,570,639 5,165,166,682 298,632,702| 12,158,370,023 454.126
20 [OCEAN 4,375 0.27 960,682,527 550,872,466 19,050,428 1,530,605,421 0.019
21 |QCD 2,359 2.27 128,030,754 128,473,915 3,041,035 259,545,704 0.013
22 |SPEC77 3,927 0.39 1,092,944,788 860,019,669 15,502,016 1,968,466,473 10.323
23 |SPICE 18,553 0.31 29,286,311 24,820,326 3,662,444 57,769,081 0.042
24 |[TRACK 3,822 0.17 39,827,571 43,597,170 1,360,233 84,784,974 0.189
25 |TRFD 485 1.02 216,132,610 216,213,639 735,436 433,081,685 0.003

Average 4,592 4.79 4,882,953,279 5,608,640,300 640,873,935 11,132,467,514 24.725

Minimum 485 0.11 29,286,311 24,820,326 42,488 57,769,081 0.002

Maximum 18,553 53.24] 33,446,177,882| 41,125,391,455 5,764,488,705| 77,686,944,566 454.126

Standard Dev. 3,780 11.31 7,794,988,825 9,722,720,340 1,440,271,652] 18,220,461,782 90.838

Total 114,803 119.76{ 122,073,831,967| 140,216,007,503 16,021,848,372| 278,311,687,842 618.116




Appendix B — Compilation Data
This appendix contains the CPU times used to compile each of the

programs, both for parallel and sequential execution. User and
system times were recorded from the Unix C-shell "time" facility.
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Benchmark |No fpp or KAP Vector fpp Parallel fpp
Name User System Total User System Total User System Total

1 {NASO1 59.73 0.51 60.23 69.63 0.82 70.45 220.03 8.35 228.38
2 |NAS02 33.96 0.67 34.64 47.71 0.53 48.23 113.90 2.23 116.13
3 |NASO03 13.16 0.34 13.50 15.85 0.33 16.19 32.41 1.61 34.02
4 INAS04 7.47 0.22 7.69 9.74 0.25 9.99 14.08 0.39 14.47
5§ |NASO05 24.20 1.21 25.41 22.30 0.39 22.68 85.94 2.30 88.24
6 |[NAS06 90.44 1.32 91.76 103.45 1.90 105.35 338.14 22.85 360.99
7 INASQ7 7.54 0.22 7.76 8.53 0.19 8.72 17.77 0.93 18.70
8 |NASO08 26.88 0.55 27.43 33.39 0.54 33.93 120.63 6.47 127.11
9 |NAS09 36.47 1.79 38.26 49.69 1.48 51.17 128.92 3.99 132.91
10 |[NAS10 54.29 1.58 55.87 64.32 2.44 66.76 287.85 7.48 295.34
11 |MFLOP90 11.82 0.56 12.38 15.26 0.48 15.74 41.37 1.99 43.36
12 |NASKERN 6.64 0.25 6.89 9.48 0.40 9.87 28.76 1.71 30.47
13 |ADM 33.80 0.50 34.30 41.65 0.71 42.35 117.90 2.31 120.21
14 JARC2D 31.45 0.56 32.01 42.43 0.91 43.34 136.42 2.67 139.09
15 |BDNA 40.09 1.05 41.14 54.79 0.67 55.46 92.10 4.43 96.53
16 |[DYFESM 15.48 0.53 16.02 18.69 0.66 19.35 36.12 1.30 37.42
17 |FLO52 16.05 0.33 16.38 19.05 0.37 19.42 55.61 2.37 57.99
18 MG 6.06 0.23 6.29 6.34 0.24 6.58 14.46 9.73 24.20
19 IMG3D 44.61 0.45 45.06 62.25 1.17 63.42 91.52 2.21 93.73
20 |OCEAN 11.16 0.66 11.82 14.06 0.45 14.50 41.76 2.81 44.57
21 [QCD 11.15 0.48 11.63 12.67 0.26 12.93 32.80 1.49 34.29
22 |SPEC77 22.20 0.72 22.92 27.36 0.49 27.85 82.00 4.39 86.40
23 |SPICE 56.04 1.68 57.73 67.50 2.17 69.67 81.95 3.40 85.35
24 [TRACK 7.54 0.28 7.82 9.19 0.42 9.61 13.37 0.56 13.92
25 {TRFD 3.31 0.21 3.52 4.18 0.19 4.37 14.05 0.53 14.58

Average 26.86 0.68 27.54 33.18 0.74 33.92 89.60 3.94 93.53

Minimum 3.31 0.21 3.52 4.18 0.19 4.37 13.37 0.39 13.92

Maximum 90.44 1.79 91.76 103.45 2.44 105.35 338.14 22.85 360.99

Standard Dev. 21.53 0.48 21.86 25.97 0.62 26.49 84.45 4.65 88.07

Total 671.54 16.90 688.44 829.48 18.45 847.93 2,239.88 98.49 2,338.37

]
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Benchmark |Vector KAP Parallel KAP
Name KAP User |KAP System |Compile User Compile Sys Total KAP User | KAP System [Compile User Compile Sys Total

1 |NASO1 47.83 0.59 59.45 0.72 108.60 47.31 0.70 187.75 3.37 239.13
2 INASO02 4410 0.45 42.64 0.57 87.75 43.25 0.41 70.63 4.94 119.23
3 |NAS03 8.31 0.32 14.58 0.34 23.54 8.36 1.60 30.88 5.25 46.08
4 |NAS04 4.42 0.16 6.82 0.24 11.65 4.42 1.60 9.01 0.28 15.31
5 INASO05 19.71 0.33 20.26 0.34 40.65 18.73 0.33 102.02 4.07 125.16
6 |NAS06 99.83 0.88 79.89 0.74 181.34 96.83 0.72 292.85 3.51 393.90
7 |NAS07 4.02 0.11 7.79 0.20 12.12 4.03 0.11 10.22 0.23 14.59
8 |NAS08 32.12 0.45 26.40 0.41 59.38 31.39 0.38 144.61 2.44 178.83
9 [NAS09 135.45 0.82 36.41 0.57 173.24 124.29 0.54 141.07 2.10 268.00
10 |INAS10 50.16 0.73 53.80 2.11 106.79 61.68 0.69 227.51 3.33 293.21
11 |[MFLOP90 13.97 0.76 12.06 0.65 27.43 14.14 0.53 28.18 0.83 43.68
12 [NASKERN 8.93 0.16 6.75 0.27 16.10 8.62 0.14 30.48 0.70 39.94
13 |[ADM 31.81 0.50 33.68 0.80 66.79 30.85 0.32 123.10 2.58 156.85
14 |ARC2D 19.83 0.43 32.04 0.52 52.82 19.10 0.31 137.70 1.78 158.89
15 |BDNA 31.55 0.22 44.34 0.61 76.72 31.66 0.21 69.25 0.95 102.07
16 |DYFESM 28.19 0.62 16.41 0.43 45.65 28.06 0.35 39.85 1.04 69.29
17 |FLOS2 16.34 0.26 17.48 1.23 35.31 15.10 0.25 55.59 0.70 71.65
18 MG 5.25 0.61 9.10 6.81 21.77 5.24 0.13 12.91 0.22 18.50
19 |MG3D 31.12 0.81 54.04 0.47 86.45 30.93 0.17 75.57 7.01 113.68
20 JOCEAN 11.23 0.33 11.24 0.30 23.09 11.08 0.27 33.53 0.85 45.73
21 |QCD 9.16 0.14 11.52 0.21 21.03 9.12 0.15 14.76 0.29 24.32
22 [SPEC77 26.88 0.28 26.11 0.52 53.79 25.70 0.25 71.61 1.94 99.50
23 |SPICE 47.64 0.62 57.69 1.72 107.68 48.68 0.68 76.09 2.05 127.51
24 |TRACK 7.61 0.20 7.76 0.28 15.84 7.51 0.20 12.75 0.51 20.97
25 |TRFD 3.36 0.11 3.86 0.20 7.54 3.30 0.12 6.37 0.34 10.13

Average 29.55 0.44 27.68 0.85 58.52 29.17 0.45 80.17 2.05 111.85

Minimum 3.36 0.11 3.86 0.20 7.54 3.30 0.11 6.37 0.22 10.13

Maximum 135.45 0.88 79.89 6.81 181.34 124.29 1.60 292.85 7.01 393.90

Standard Dey| 30.79 0.24 20.88 1.32 48.04 29.44 0.40 74.47 1.83 99.62

Total 738.81 10.90 692.12 21.24 1,463.08 729.37 11.15 2,004.31 51.30 2,796.13
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Appendix C — Performance Data
This appendix contains the following information:

Elapsed sec — total program elapsed (wall clock) execution time,
in seconds, as measured by the UNICOS "ja" utility.

CPU sec — program CPU (user) execution time, in seconds, as
measured by the "ja" utility.

System sec — program system time, in seconds, also from "ja".

% Vectorization — percentage of program instructions that were
vector instructions. This value is calculated in Appendix D.

MFLOPS — millions (10**6) of floating point operations per
second. It is calculated by dividing the total floating point
operations (recorded in Appendix A) by the elapsed time.

Sem. Wait — semaphore wait time as reported by the hardware
performance monitor (HPM) group 1. Semaphore wait time
indicates the percentage of time CPUs spend in a "parked" state
waiting for work to become available.

Con. CPU — average concurrent CPUs as reported by the "ja"
facility. It indicates the average number of CPUs that are

either busy in behalf of the program or idle available to do
work.

Speedup — multiplication factor of improvement in elapsed
time over the default vectorization execution elapsed time.
Values below 1.00 indicate the performance was higher with
default vectorization.

-

Instructions — total vector and scalar instructions executed, as
recorded by the HPM (group 0).

MIPS — millions (10**6) of instructions executed per second.
CPI — average number of clock periods per instruction, or

Elapsed time
Instructions x 6.0 ns/clock

CPI
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Dedicated Runs -- No fpp or KAP
Options Elapsed Sec CPU Sec System Sec |% Vectorization MFLOPS Instructions MIPS CPI

1 (none) 126.16 123.49 0.84 93.95 165.93 3,695,431,826 29.93 5.567
2 (none) 84.50 84.17 0.06 .81.07 164.33 4,181,431,652 49.68 3.35
3 {none) 298.24 294.13 3.48 59.81 44.41 18,610,477,409 63.27 2.63
4 {none) 265.75 265.42 0.06 63.45 54.02 16,576,062,218 62.45 2.67
5 (none) 192.03 189.28 2.44 92.50 147.13 5,613,224,332 29.66 5.62
6 (none) 75.35 74.41 0.52 96.42 160.43 1,674,392,527 22.50 7.41
7 (none) 39.15 36.43 0.62 59.37 36.41 1,794,662,049 49.27 3.38
8 (none) 285.73 276.60 3.52 96.40 177.67 5,255,976,111 19.00 8.77
9 (none) 142.35 140.32 1.63 86.94 124.19 6,343,683,068 45.21 3.69
10 (none) 574.71 564.14 6.96 95.57 135.18 12,598,056,246 22.33 7.46
11 (none) 7.59 7.32 0.02 61.79 30.37 374,086,471 51.10 3.26
12 (none) 21.71 21.44 0.01 93.84 102.70 379,414,041 17.70 9.42
13 (none) 29.87 29.11 0.06 41.09 17.64 1,819,013,753 62.49 2.67
14 (none) 13.73 13.21 0.19 90.73 163.94 381,938,141 28.91 5.76
15 {none) 10.33 9.36 0.15 89.26 113.95 306,756,768 32.77 5.09
16 (none) 12.52 12.13 0.03 75.90 42.92 589,774,742 48.62 3.43
17 {none) 5.563 5.18 0.08 88.33 116.08 217,851,591 42.06 3.96
18 (none) 190.82 190.06 0.04 43.21 20.46 9,607,732,728 50.55 3.30
19 (none) 413.59 409.14 3.88 44.27 29.40 26,286,893,010 64.25 2.59
20 {none) 48.63 48.29 0.02 45.65 31.47 3,381,976,139 70.03 2.38
21 {none) 26.09 25.75 0.03 17.75 9.95 1,675,154,322 65.05 2.56
22 (none) 61.41 §9.38 0.77 55.63 32.05 3,366,112,528 56.69 2.94
23 {none) 9.50 9.03 0.02 11.23 6.08 387,639,038 42.93 3.88
24 (none) 11.34 10.80 0.03 12.49 7.48 537,079,811 49.73 3.35
25 {none) 8.27 7.92 0.11 69.56 52.37 525,834,530 66.39 2.51

Average 118.20 116.26 1.02 66.61 79.46 5,047,226,202 45.70 4.31

Minimum 5.53 5.18 0.01 11.23 6.08 217,851,591 17.70 2.38

Maximum 574.71 564.14 6.96 96.40 177.67 26,286,893,010 70.03 9.42

Standard Dev. 148.06 145.86 1.74 27.21 60.81 6,749,482,650 16.32 2.05

Total 2,954.91 2,906.50 25.56 1,665.21 1,986.57 126,180,655,051 1,142.58 107.66

]
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Dedicated Runs -- Vector fpp
Options Elapsed Sec CPU Sec System Sec |% Vectorization MFLOPs Speedup Instructions MIPS CP!

1 125.84 121.43 1.81 94.22 166.36 1.00 3,563,031,465 29.34 5.68
2 82.78 82.57 0.06 81.64 167.74 1.02 4,066,333,343 49.25 3.38
3 242.79 239.74 2.93 71.71 54.55 1.23| 13,058,132,042 54.47 3.06
4 227.56 224.77 2.67 73.48 63.09 1.17] 11,947,308,904 53.15 3.14
5 176.27 175.91 0.20 93.22 160.29 1.09 5,109,816,586 29.05 5.74
6 76.88 73.34 1.91 99.02 157.25 0.98 1,644,641,710 22.42 7.43
7 38.12 36.44 0.89 86.86 37.39 1.03 1,794,704,563 49.25 3.38
8 289.47 273.61 4.32 96.43 175.37 0.99 5,162,825,462 18.87 8.83
9 157.95 156.93 0.72 84.69 111.92 0.80 7,435,175,677 47.38 3.52
10 587.48 558.78 14.88 95.48 132.24 0.98] 12,497,031,504 22.36 7.45
11 8.11 7.75 0.17 64.78 28.43 0.94 353,053,404 45.58 3.66
12 20.99 20.59 0.26 94.26 106.23 1.03 355,347,924 17.25 9.66
13 25.67 24.54 0.34 44.75 20.53 1.16 1,486,097,494 60.55 2.75
14 13.59 12.87 0.30 95.05 165.63 1.01 320,141,448 24.88 6.70
15 10.74 9.35 0.19 89.24 109.60 0.96 302,240,411 32.31 5.16
16 12.16 11.76 0.04 75.83 44.19 1.03 561,376,804 47.75 3.49
17 5.44 5.07 0.08 88.45 118.00 1.02 212,559,938 41.94 3.97
18 228.34 227.00 1.12 43.18 17.10 0.84] 11,611,645,442 51.15 3.26
19 483.88 433.64 6.86 43.72 25.13 0.85] 27,551,228,485 63.53 2.62
20 39.10 38.83 0.02 52.33 39.15 1.24 2,451,186,973 63.13 2.64
21 26.59 26.00 0.28 17.84 9.76 0.98 1,670,996,886 64.26 2.59
22 61.96 61.06 0.26 59.27 31.77 0.99 3,235,155,583 52.98 3.15
23 9.50 9.14 0.12 11.17 6.08 1.00 386,529,649 42.28 3.94
24 11.20 10.52 0.15 12.54 7.57 1.01 529,700,869 50.37 3.31
25 8.46 7.81 0.09 69.79 51.19 0.98 525,808,977 67.33 2.48

Average 118.83 113.98 1.63 69.56 80.26 1.02 4,713,282,862 44.03 4.44

Minimum 5.44 5.07 0.02 11.17 6.08 0.84 212,559,038 17.25 2.48

Maximum 587.48 558.78 14.88 99.02 175.37 1.24| 27,551,228,485 67.33 9.66

Standard Dev. 1563.70 144.54 3.21 27.31 60.70 0.10 6,370,973,010 15.35 2.07

Total 2,970.87 2,849.45 40.64 1,738.94 2,006.56 25.43{ 117,832,071,543| 1,100.86 110.99

\
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Dedicated Runs -- fpp + 4 CPUs
Options Elapsed Sec| CPU Sec Sys Sec | % Vector | MFLOPS |Sem. Waill Con. CPU Speedup Instructions MIPS CPI

1 66.28 139.61 3.14 92.83 315.86 43.95 3.99 1.90 4,450,353,494 31.88 5.23
2 64.84 108.49 0.40 79.61 214.15 57.30 3.99 1.30 5,616,117,144 51.77 3.22
3 233.78 240.37 11.63 71.68 56.65 73.93 4.00 1.28] 13,076,093,555 54.40 3.06
4 218.53 225.61 2.89 73.47 65.70 74.06 3.99 1.22| 11,972,607,259 §3.07 3.14
5 162.08 227.86 3.85 91.40 174.32 64.42 3.99 1.18 7,539,145,719 33.09 5.04
6 26.20 82.43 1.11 94.07 461.41 18.08 3.98 2.88 2,168,782,914 26.31 6.33
7 36.97 36.80 0.18 57.69 38.56 74.90 3.96 1.06 1,822,418,496 49.52 3.37
8 Wd-e6ijt 112.86 286.95 1.11 96.05 449.81 27.48 3.99 2.53 5,713,537,950 19.91 8.37
9 68.14 174.67 0.35 83.25 259.44 35.35 3.99 2.09 8,311,801,380 47.59 3.50
10 239.90 623.85 1.83 94.28 323.83 30.99 3.99 2.40| 15,384,866,192 24.66 6.76
11 7.75 8.25 0.13 36.21 29.75 72.08 4.00 0.98 384,357,322 46.59 3.58
12 14.38 22.57 0.30 93.37 155.06 59.82 4.00 1.51 450,718,126 19.97 8.35
13 32.40 29.10 0.45 40.03 16.27 74.69 3.98 0.92 1,764,828,201 60.65 2.75
14 5.88 15.62 0.19 92.48 382.80 26.75 3.98 2.34 524,491,880 33.58 4.96
15 9.90 10.58 0.39 87.78 118.90 71.12 3.92 1.04 344,273,495 32.54 5.12
16 10.99 12.93 0.07 74.03 48.90 68.16 3.97 1.14 619,341,073 47.90 3.48
17 Wd-e46it 2.32 5.59 0.06 88.00 276.70 27.80 3.98 2.38 235,464,175 42.12 3.96
18 193.81 193.54 2.51 43.01 20.15 74.91 3.99 0.98 9,675,074,199 49.99 3.33
19 448.10 462.90 6.49 39.39 27.13 86.94 3.99 0.92| 30,380,592,439 65.63 2.54
20 60.50 65.63 0.31 44.17 25.30 72.48 3.99 0.80 4,767,023,208 72.63 2.29
21 26.64 26.24 0.16 17.71 9.74 74.97 3.99 0.98 1,698,142,883 64.72 2.58
22 62.05 67.12 0.86 55.51 31.72 72.06 3.99 0.99 3,724,592,390 55.49 3.00
23 11.05 9.14 0.19 10.99 5.23 74.94 3.98 0.86 388,556,787 42.49 3.92
24 11.99 10.59 0.18 12.39 7.07 74.84 3.98 0.95 531,551,600 50.19 3.32
25 12.76 12.46 0.06 64.80 33.94 74.89 3.99 0.65 647,555,924 51.97 3.21

Average 85.60 123.96 1.55 65.37 141.93 60.28 3.98 1.41 6,287,691,512 45.15 4.18

Minimum 2.32 5.59 0.06 10.99 5.23 18.08 3.92 0.65 235,464,175 19.91 2.29

Maximum 448.10 623.85 11.63 96.05 461.41 86.94 4.00 2.88] 30,380,592,439 72.63 8.37

Standard Dev. 107.94 155.65 2.61 27.82 149.68 20.41 0.02 0.65 6,865,339,807 14.29 1.70

Total 2,140.10{ 3,098.91 38.85| 1,634.20| 3,548.37)1,506.91 99.60 35.28| 132,192,287,805]/ 1,128.64] 104.41
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Dedicated Runs -- fpp + 8 CPUs
Options Elapsed Sec| CPUSec | Sys Sec | % Vector MFLOPS | Sem. Wait | Con. CPU | Speedup Instructions MIPS CPI

1 59.83 149.81 7.36 93.00 349.91 65.83 7.94 211 4,894,628,874 32.67 5.10
2 71.17 130.69 7.22 80.28 195.10 76.49 7.94 1.19 6,138,452,254 46.97 3.55
3 230.13 240.40 6.29 71.88 57.55 86.90 7.99 1.30] 13,078,731,691 54.40 3.06
4 217.07 225.69 3.87 73.47 66.14 86.95 7.88 1.22] 11,970,172,129 53.04 3.14
5 168.37 248.51 9.41 91.37 178.40 79.98 7.95 1.21 8,509,563,117 34.24 4.87
6 17.79 85.17 2.15 94.37 679.56 35.05 7.93 4.24 2,394,873,581 28.12 5.93
7 36.99 36.87 0.80 57.93 38.54 87.40 7.97 1.06 1,846,351,759 50.08 3.33
8 Wd-e6ijt 76.44 290.01 4.37 95.98 664.12 47.13 7.95 3.74 5,822,305,676 20.08 8.30
9 54.55 189.16 4.04 83.53 324,07 55.97 7.93 2.61 8,969,971,913 47.42 3.51
10 198.71 679.04 72.01 94.10 390.96 53.74 7.85 2.89] 17,076,106,273 25.15 6.63
11 7.53 8.35 0.42 45.15 30.62 85.76 7.93 1.01 401,511,486 48.09 3.47
12 13.56 23.63 0.59 97.18 164.43 77.81 7.96 1.60 497,264,039 21.04 7.92
13 30.51 29.41 2.39 39.06 17.27 87.08 7.92 0.98 1,772,769,852 60.28 2.76
14 4.83 16.98 2.22 91.63 466.02 47.49 7.43 2.84 578,472,579 34.07 4.89
15 10.50 12.72 3.26 87.73 112.11 82.96 7.52 0.98 411,352,346 32.34 5.15
16 10.64 13.28 1.30 73.90 50.50 83.58 7.87 1.18 625,837,071 47.13 3.54
17 Wd-e46jt 2.19 6.18 1.57 87.54 293.12 52.27 7.60 2.53 254,121,477 41.12 4.05
18 226.66 226.58 3.08 43.02 17.23 87.45 7.89 0.84 11,666,519,400 51.49 3.24
19 446.47 464.38 12.20 39.40 27.23 86.94 7.97 0.93] 30,427,721,104 65.52 2.54
20 59.83 66.53 1.95 21.00 25.58 85.96 7.77 0.81 4,784,581,979 71.92 2.32
21 26.88 26.66 0.68 17.70 9.66 87.39 7.95 0.97 1,699,517,361 63.75 2.61
22 62.35 68.68 15.09 55.51 31.57 85.29 7.81 0.98 3,789,607,607 55.18 3.02
23 11.13 9.15 0.39 11.11 5.19 87.39 7.95 0.85 390,132,864 42.63 3.91
24 11.95 10.61 0.23 12.42 7.09 87.34 7.90 0.95 537,172,035 50.63 3.29
25 12.92 12.49 0.35 64.76 33.52 87.38 7.95 0.64 647,029,973 51.80 3.22

Average 82.36 130.84 6.53 64.92 169.42 75.50 7.87 1.59 5,567,390,738 45.17 4.13

Minimum 2.19 6.18 0.23 11.11 5.19 35.05 7.43 0.64 254,121,477 20.08 2.32

Maximum 446.47 679.04 72.01 97.18 679.56 87.45 7.99 4.24] 30,427,721,104 71.92 8.30

Standard Dev. 107.04 164.69 14.18 28.78 203.63 16.52 0.14 0.99 7,069,440,113 13.84 1.61

Total 2,059.00| 3,270.98 163.25| 1,623.02] 4,235.50{ 1,887.53] 196.75 39.66] 139,184,768,440] 1,129.15| 103.36

]



Ly

Dedicated Runs -- Vector KAP
Options Elapsed Sec CPU Sec System Sec {% Vectorization MFLOPS Speedup Instructions MIPS CPI

1 123.75 121.49 0.39 94.23 169.17 1.02 3,557,493,168 29.28 5.69
2 79.37 77.55 0.96 . 97.62 174.95 1.06 2,779,827,595 35.85 4.65
3 194.59 192.04 2.28 67.54 68.06 1.63] 11,907,241,526 62.00 2.69
4 186.42 183.94 2.20 70.08 77.01 1.43] 11,095,838,967 60.32 2.76
5 183.88 182.97 0.19 92.88 153.66 1.04 5,338,716,339 29.18 5.71
6 74.63 74.16 0.13 95.55 161.99 1.01 1,631,631,554 22.00 7.58
7 39.19| 36.41 0.89 59.36 36.37 1.00 1,795,591,200 49.32 3.38
8 296.69 277.30 3.79 96.53 171.10 0.96 5,148,504,508 18.57 8.98
9 140.82 140.32 0.05 87.22 125.54 1.01 6,223,383,825 44.35 3.76
10 583.51 564.62 7.10 95.46 133.14 0.98] 12,631,359,159 22.37 7.45
11 mve=-1 7.15 6.88 0.01 62.91 32.24 1.06 341,329,039 49.61 3.36
12 21.81 20.99 0.26 98.87 102.23 1.00 343,023,909 16.34 10.20
13 29.22 28.08 0.37 43.29 18.04 1.02 1,691,952,728 60.25 2.77
14 13.69 13.16 0.20 93.89 164.42 1.00 374,596,228 28.46 5.86
15 10.49 9.43 0.17 89.21 112.21 0.98 309,702,934 32.84 5.07
16 13.24 12.31 0.18 75.07 40.59 0.95 598,894,718 48.65 3.43
17 5.62 5.23 0.08 89.48 114.22 0.98 200,539,712 38.34 4.35
18 195.47 192.81 2.29 43.25 19.97 0.98 9,637,958,123 49.99 3.33
19 463.90 459.44 3.90 43.69 26.21 0.89] 28,925,510,173 62.96 2.65
20 48.77 48.09 0.03 46.08 31.38 1.00 3,346,770,828 69.59 2.39
21 26.99 26.31 0.35 17.74 9.62 0.97 1,675,232,033 63.67 2.62
22 65.69 63.98 0.84 52.57 29.97 0.93 3,812,666,846 59.59 2.80
23 9.59 9.15 0.02 11.51 6.02 0.99 379,764,505 41.50 4.02
24 11.58 10.59 0.15 12.41 7.32 0.98 537,366,806 50.74 3.28
25 7.99 7.62 0.11 69.36 54.20 1.04 494,019,724 64.83 2.57

Average 113.36 110.59 1.08 68.23 81.59 1.03 4,591,156,646 44.43 4.45

Minimum 5.62 5.23 0.01 11.51 6.02 0.89 200,539,712 16.34 2.39

Maximum 583.51 564.62 7.10 98.87 174.95 1.53 28,925,510,173 69.59 10.20

Standard Dev. 147.93 144.15 1.70 28.07 61.08 0.14 6,390,163,288 16.28 2.14

Total 2,834.05 2,764.87 26.92 1,705.80 2,039.64 25.82| 114,778,916,147| 1,110.63 111.33

]



8

Dedicated Runs -- KAP + 4 CPUs
Options Elapsed Sec] CPUSec | Sys Sec | % Vector MFLOPS [ Sem. Wait|{ Con.CPU Speedup Instructions MIPS CPI

1 93.67 164.61 6.43 90.08 223.50 53.46 3.98 1.35 5,930,025,083 36.03 4.63
2 80.54 92.34 4.29 85.36 172.41 70.55 3.99 1.05 3,342,566,243 36.20 4.60
3 192.47 193.66 9.74 67.51 68.81 74.48 3.98 1.565| 11,925,369,712 61.58 2.71
4 182.38 184.08 3.35 70.02 78.72 74.62 3.98 1.46] 11,124,563,791 60.43 2.76
5 197.78 417.21 7.37 80.65 142.85 46.49 3.99 0.97] 19,438,367,000 46.59 3.58
6 25.98 81.28 1.74 94.25 465.38 18.20 3.97 2.90 2,028,820,284 24.96 6.68
7 38.48 38.00 1.89 58.34 37.04 74.49 3.93 1.02 1,845,614,697 48.57 3.43
8 115.62 314.49 0.99 94.91 439.07 21.95 3.99 2.47 7,315,700,575 23.26 7.16
9 71.16 172.55 2.87 83.92 248.43 37.61 3.98 2.00 7,730,268,572 44.80 3.72
10 318.37 605.12 7.03 94.65 244.02 51.62 3.99 1.81] 14,664,327,377 24.23 6.88
11 mve=-1 7.34 7.19 0.38 62.23 31.40 74.22 3.99 1.03 350,840,048 48.83 3.4
12 12.23 30.87 0.05 88.16 182.31 33.20 4.00 1.78 665,159,280 21.565 7.73
13 29.25 37.34 0.67 40.20 18.02 66.85 3.98 1.02 2,134,794,428 57.17 2.92
14 5.46 15.99 0.16 90.15 412.25 21.11 3.96 2.51 557,385,501 34.86 4.78
15 9.88 10.31 0.51 88.08 119.14 71.85 3.90 1.05 336,894,643 32.68 5.10
16 13.27 13.27 0.08 73.82 40.49 73.24 3.98 0.94 632,521,942 47.67 3.50
17 2.44 5.87 0.13 88.02 263.09 27.44 3.92 2.27 230,860,813 39.33 4.24
18 X=a 174.13 173.89 2.05 43.96 22.42 74.92 3.99 1.10 8,193,825,297 47.12 3.54
19 Xx=a exd=-1 444.66 462.81 3.93 42.96 27.34 73.89 3.99 0.93] 32,781,095,672 70.83 2.35
20 43.98 49.09 0.09 45.90 34.80 71.85 4.00 1.11 3,404,343,424 69.35 2.40
21 x=a exd=-1 26.54 26.20 0.14 17.58 9.78 74.95 4.00 0.98 1,699,820,166 64.88 2.57
22 53.14 69.94 1.23 51.22 37.04 66.55 3.97 1.16 4,092,097,126 58.51 2.85
23 10.40 9.20 0.17 11.53 5.55 74.75 3.97 0.91 386,415,544 42.00 3.97
24 11.18 10.82 0.58 12.31 7.58 74.67 3.97 1.01 543,326,282 50.21 3.32
25 7.95 7.69 0.06 69.18 54.48 74.73 3.99 1.04 497,967,065 64.76 2.57
Average _ 86.73 127.75 2.24 65.80 135.44 59.11 3.98 1.42 5,674,118,823 46.26 4.06
Minimum 2.44 5.87 0.05 11.53 5.55 18.20 3.90 0.91 230,860,813 21.55 2.35
Maximum 444.66 605.12 9.74 94.91 465.38 74.95 4.00 2.90} 32,781,095,672 70.83 7.73
Standard Deviat 110.63 162.23 2.76 26.34 141.56 20.46 0.02 0.59 7,639,713,591 14.76 1.57
Total 2,168.29; 3,193.81 55.94] 1,644.99| 3,385.93| 1,477.69 99.39 35.41] 141,852,970,565| 1,156.39/ 101.39

]




6V

Dedicated Runs -- KAP + 8 CPUs
Options Elapsed Sec| CPUSec | Sys Sec | % Vector | MFLOPS | Sem. Wait Con. CPU | Speedup Instructions MIPS CPI

1 87.14 183.02 8.14 89.34 240.24 71.68 7.96 1.45 5,871,825,309 32.08 5.19
2 80.32 103.31 2.98 86.17 172.88 83.70 7.97 1.05 3,421,020,545 33.11 5.03
3 190.04 193.13 3.21 67.51 69.69 87.24 7.98 1.57] 11,923,756,822 61.74 2.70
4 182.55 184.25 4.98 70.02 78.65 87.30 7.98 1.46] 11,124,783,685 60.38 2.76
5 220.45 620.33 29.10 82.15 128.16 63.87 7.94 0.87] 29,627,838,873 47.76 3.49
6 17.82 85.38 1.96 93.64 678.54 35.49 7.94 4.23 2,163,732,423 25.34 6.58
7 38.72 37.46 9.54 58.24 36.82 86.91 7.66 1.01 1,872,342,368 49.98 3.33
8 80.51 321.74 6.59 94.84 630.54 41.53 7.94 3.55 7,368,582,541 22.90 7.28
9 62.73 196.64 5.13 84.72 281.81 59.89 7.94 2.27 8,166,351,745 41.53 4.01
10 288.86 636.68 9.58 94.73 268.95 71.51 7.97 1.99] 14,271,485,480 22.42 7.44
11 mve=-1 7.19 7.10 0.64 62.34 32.06 86.91 7.91 1.06 353,024,231 49.72 3.35
12 11.82 34.39 1.65 89.52 188.64 61.67 7.90 1.84 721,854,356 20.99 7.94
13 30.67 43.78 2.57 41.92 17.18 80.59 7.92 0.97 2,159,690,483 49.33 3.38
14 5.66 18.10 0.93 91.11 397.68 43.16 7.78 2.43 599,139,451 33.10 5.03
15 9.97 10.44 2.44 87.98 118.06 85.19 7.63 1.04 334,025,424 31.99 5.21
16 12.92 14.03 0.56 74.56 41.59 85.87 7.92 0.97 646,356,009 46.07 3.62
17 2.32 6.35 0.31 87.09 276.70 53.98 7.62 2.38 247,075,312 38.91 4.28
18 X=a 191.22 190.89 3.93 43.23 20.42 87.46 7.98 1.00 9,645,861,127 50.53 3.30
19| x=a exd=-1 442.04 464.47 13.36 40.51 27.51 86.79 7.97 0.94] 30,861,960,708 66.45 2.51
20 43.77 49.56 1.08 45.90 34.97 85.51 7.79 1.11 3,410,150,233 68.81 2.42
21 x=a exd=-1 26.77 26.23 1.45 17.60 9.70 87.42 7.95 0.97 1,699,744,111 64.80 2.57
22 51.23 73.13 3.14 51.11 38.42 81.77 7.93 1.20 4,159,618,327 56.88 2.93
23 9.67 9.30 0.29 11.54 5.97 87.25 7.92 0.98 386,254,885 41.53 4.01
24 11.09 10.76 0.69 12.15 7.65 87.28 7.88 1.02 540,857,234 50.27 3.32
25 8.34 7.75 0.39 69.10 51.93 87.20 7.90 0.99 498,528,880 64.33 2.59

Average 84.55 141.13 4.59 65.88 154.19 75.09 7.89 1.63 6,083,034,422 45.24 4.17

Minimum 2.32 6.35 0.29 11.54 5.97 35.49 7.62 0.87 247,075,312 20.99 2.42

Maximum 442.04 636.68 29.10 94.84 678.54 87.46 7.98 4.23] 30,861,960,708 68.81 7.94

Standard Dev. 109.54 185.21 6.17 26.50 185.50 16.66 0.11 0.86 8,371,494,707 14.75 1.64

Total 2,113.82| 3,528.22 114.65| 1,647.04] 3,854.76] 1,877.17 197.28 38.34] 152,075,860,562| 1,130.96] 104.28




0¢

Dedicated Runs -- Vector KAP + fpp
Options Elapsed Sec CPU Sec System Sec |% Vectorization MFLOPS Speedup Instructions MIPS CPI

1 122.66 121.49 0.38 94.20 170.67 1.03 3,651,607,414 29.23 5.70
2 76.84 76.68 0.06 88.30 180.71 1.10 2,716,546,579 35.43 4.70
3 152.55 152.39 0.05 80.20 86.82 1.96 7,177,256,270 47.10 3.54
4 143.88 143.70 0.06 81.77 99.78 1.85 6,492,756,485 45.18 3.69
5 176.64 176.25 0.18 93.20 159.95 1.09 5,147,965,138 29.21 5.71
6 74.64 73.28 1.01 95.52 161.96 1.01 1,608,089,560 21.95 7.59
7 37.37 36.48 0.17 59.36 38.15 1.05 1,794,936,446 49.20 3.39
8 284.40 274.93 3.66 96.56 178.50 1.00 5,048,668,466 18.36 9.08
9 138.30 137.61 0.06 87.73 127.82 1.03 5,937,511,5653 43.15 3.86
10 569.41 559.45 1.30 95.47 136.43 1.01] 12,528,177,948 22.39 7.44
11 mve=-1 8.26 7.89 0.10 63.76 27.91 0.92 357,710,552 45.31 3.68
12 23.03 20.27 0.02 94.71 96.82 0.94 317,319,042 15.65 10.65
13 25.63 24.91 0.03 45.94 20.56 1.17 1,484,201,381 59.58 2.80
14 13.23 12.93 0.04 95.02 170.12 1.04 368,551,170 28.49 5.85
15 10.07 9.45 0.06 89.09 116.92 1.03 304,144,306 32.20 5.18
16 12.93 12.56 0.04 74.58 41.56 0.97 606,841,480 48.32 3.45
17 5.28 5.08 0.01 89.60 121.53 1.05 194,965,998 38.41 4.34
18 229.12 226.28 2.73 43.25 17.04 0.83] 11,629,282,133 51.39 3.24
19 457.89 452.08 5.42 44.09 26.55 0.90| 29,087,392,727 64.34 2.59
20 43.90 43.31 0.51 45.06 34.87 1.11 3,043,017,734 70.27 2.37
21 26.32 25.37 0.32 16.95 9.86 0.99 1,671,723,407 65.90 2.53
22 58.67 56.53 0.77 60.24 33.565 1.05 3,016,712,155 53.36 3.12
23 9.74 9.29 0.13 11.51 5.93 0.98 378,857,703 40.78 4.09
24 11.12 10.56 0.14 12.45 7.62 1.02 631,273,255 50.32 3.31
25 7.78 7.50 0.02 69.62 55.67 1.06 492,736,541 65.70 2.54

Average 108.79 107.05 0.69 69.13 85.09 1.09 4,219,529,818 42.85 4.58

Minimum 5.28 5.08 0.01 11.51 5.93 0.83 194,965,998 15.65 2.37

Maximum 569.41 559.45 5.42 96.56 180.71 1.96 29,087,392,727 70.27 10.65

Standard Dev. 144.58 142.36 1.33 27.68 62.80 0.26 6,207,407,322 15.61 2.15

Total 2,719.67 2,676.26 17.29 1,728.19 2,127.31 27.16] 105,488,245,443| 1,071.24 114.43

]



IS

Dedicated Runs -- KAP + fpp + 4 CPUs
Options Elapsed Sec] CPUSec | Sys Sec | % Vector | MFLOPS Sem. Wait | Con. CPU | Speedup Instructions MIPS CPI

1 93.45 164.63 4.42 89.98 224.03 53.50 3.99 1.35 5,981,392,607 36.33 4.59
2 82.02 128.96 1.01 7711 169.30 60.34 4.00 1.03 6,129,156,778 47.53 3.51
3 145.62 152.97 7.24 80.13 90.95 73.35 3.99 2.05 7,215,251,166 4717 3.53
4 135.93 143.10 1.76 81.76 105.62 73.563 4.00 1.96 6,503,564,817 45.45 3.67
5 196.76 420.17 7.05 82.07 143.60 45.67 4.00 0.98] 19,527,987,464 46.48 3.59
6 25.19 81.85 0.47 93.81 479.91 16.22 3.99 2.99 2,050,772,349 25.06 6.65
7 37.13 36.84 0.61 58.18 38.39 74.83 3.99 1.05 1,823,411,916 49.49 3.37
8 Wd-e6ijt 101.43 315.95 2.19 94.84 500.50 15.45 3.99 2.82 7,366,445,526 23.32 7.15
9 71.51 172.16 1.84 84.86 247.20 37.65 3.99 1.99 7,891,149,002 45.83 3.64
10 232.93 633.02 6.82 93.65 333.562 30.47 3.99 2.47 15,760,072,541 24.90 6.69
11 mve=-1 8.05 8.40 0.16 61.79 28.64 72.65 3.99 0.94 394,432,649 46.95 3.55
12 11.83 30.85 0.05 90.40 188.45 33.32 4.00 1.83 715,259,371 23.19 7.19
13 28.46 36.74 0.12 44.39 18.52 66.68 3.99 1.05 2,193,629,364 59.71 2.79
14 5.50 15.89 0.23 91.01 409.25 21.64 3.97 2.50 574,095,058 36.12 4.61
15 9.65 10.75 0.45 87.79 121.97 70.44 3.96 1.07 351,565,420 32.71 5.09
16 10.62 13.59 0.09 72.40 50.60 67.11 3.98 1.18 656,131,985 48.29 3.45
17 Wd-e46ijt 2.54 5.84 0.12 88.02 252.73 26.34 3.98 2.18 228,372,936 39.10 4.26
18 X=a 193.61 193.36 2.36 43.09 20.17 74.91 3.99 0.99 9,693,099,076 50.13 3.32
19| x=a exd=-1 464.96 483.48 7.01 39.31 26.15 73.88 3.99 0.89] 36,380,696,712 75.25 2.24
20 55.19 60.90 0.73 28.74 27.74 72.16 3.99 0.88 4,288,154,318 70.41 2.37
21 x=a exd=-1 26.66 26.28 0.13 29.06 9.74 74.98 4.00 0.98 1,696,888,355 64.58 2.58
22 53.16 69.97 1.46 51.32 37.03 66.51 3.97 1.16 4,121,690,901 58.90 2.83
23 9.58 9.23 0.08 11.54 6.03 74.91 3.99 0.99 380,709,730 41.26 4.04
24 10.85 10.55 0.19 12.34 7.81 74.82 3.97 1.05 633,449,068 50.57 3.30
25 12.51 12.27 0.06 63.05 34.62 74.83 3.99 0.66 646,015,236 52.65 3.17

Average 81.01 129.51 1.87 66.02 142.90 57.05 3.99 1.48 5,724,135,774 45.66 4.05

Minimum 2.54 5.84 0.05 11.54 6.03 15.45 3.96 0.66 228,372,936 23.19 2.21

Maximum 464.96 633.02 7.24 94.84 500.50 74.98 4.00 2.99| 36,380,696,712 75.25 7.19

Standard Dev. 104.75 166.69 2.51 26.58 151.81 21.46 0.01 0.69 8,076,130,383 13.86 1.45

Total 2,025.13{ 3,237.74 46.66] 1,650.61| 3,572.46] 1,426.19 99.69 37.02] 143,103,394,345|1,141.38| 101.15




(4

Dedicated Runs -- KAP + fpp + 8 CPUs
Options Elapsed Sec| CPUSec | Sys Sec | % Vector | MFLOPS Sem. Wait| Con.CPU | Speedup Instructions MIPS CP{

1 86.53 181.62 9.55 88.75 241.94 71.78 7.95 1.46 7,087,213,185 39.02 4.27
2 80.07 147.22 6.89 77.92 173.42 76.54 7.94 1.06 6,888,484,712 46.79 3.56
3 142.81 153.07 2.07 80.12 92.74 86.54 7.99 2.09 7,220,802,923 47.17 3.53
4 135.49 143.89 2.80 81.76 105.96 87.64 7.98 1.96 6,503,522,836 45.20 3.69
5 216.66 624.82 30.89 80.57 130.41 62.77 7.94 0.89] 29,859,470,279 47.79 3.49
6 17.14 85.27 2.25 93.33 705.44 32.87 7.94 4.40 2,328,487,813 27.31 6.10
7 37.23 36.96 1.48 58.03 38.29 87.39 7.91 1.05 1,846,248,635 49.95 3.34
8 Wd-e6ijt 73.72 323.70 8.25 94.06 688.64 32.93 7.92 3.88 7,6562,234,073 23.33 7.14
9 63.94 196.50 4.25 84.87 276.48 59.83 7.95 2.23 8,943,395,138 45.51 3.66
10 191.08 686.12 13.44 93.87 406.56 5§3.73 7.95 3.01] 16,024,132,383 23.35 7.14
11 mve=-1 8.29 8.86 0.41 60.19 27.80 85.93 7.93 0.92 406,317,275 45.88 3.63
12 11.68 34.32 1.01 90.27 190.88 61.85 7.93 1.86 872,834,131 25.43 6.55
13 29.01 43.07 2.79 43.75 18.16 80.38 7.93 1.03 2,458,684,732 §7.09 2,92
14 4.42 17.92 0.47 92.18 509.23 42.99 7.76 3.11 670,856,926 37.45 4.45
15 9.85 12.03 0.49 87.85 119.47 83.66 7.66 1.05 396,535,389 32.96 5.06
16 10.70 13.87 0.61 73.07 50.22 83.08 7.91 1.17 667,539,851 48.13 3.46
17 Wd-e46jt 2.70 6.34 0.31 87.63 237.75 53.37 7.82 2.05 235,745,981 37.18 4.48
18 X=a 228.71 228.25 3.47 43.10 17.07 87.74 7.98 0.83] 11,682,840,963 51.18 3.26
19| x=a exd=-1 461.60 483.38 12.39 38.77 26.34 86.84 7.97 0.90] 32,121,690,951 66.45 2.51
20 54.42 61.47 0.97 28.74 28.13 85.75 7.98 0.89 4,286,007,671 69.73 2.39
21 Xx=a exd=-1 26.85 26.31 1.18 17.63 9.67 87.43 7.97 0.97 1,696,380,388 64.48 2.58
22 51.46 73.39 3.97 51.37 38.25 81.73 7.90 1.19 4,089,517,130 5§5.72 2.99
23 9.77 9.20 0.32 11.55 5.91 87.41 7.96 0.97 383,038,352 41.63 4.00
24 10.93 10.55 0.50 12.34 7.76 87.29 7.92 1.04 532,188,019 50.44 3.30
25 12.57 12.31 0.29 63.08 34.45 87.34 7.96 0.66 646,602,260 52.53 3.17

Average 79.11 144.82 4.44 65.39 167.24 73.39 7.92 1.63 6,216,030,880 45.27 4.03

Minimum 2.70 6.34 0.29 11.55 5.91 32.87 7.66 0.66 235,745,981 23.33 2.39

Maximum 461.60 686.12 30.89 94.06 705.44 87.74 7.99 4.40f 32,121,690,951 69.73 7.14

Standard Dev. 104.93 192.29 6.71 27.31 205.76 18.03 0.07 1.01 8,503,782,358 12.63 1.37

Total 1,977.63] 3,620.44 111.06] 1,634.79| 4,180.98| 1,834.81 198.05 40.64] 155,400,771,996| 1,131.71| 100.69




Appendix D — Vectorization Data

This appendix contains the calculation of the percent vectorization
reported in Appendix C. Block memory reference counts come from
the hardware performance monitor (HPM) group 2. All other values

come from HPM group 3. Group 3 measurements were obtained with
avl disabled.

Block memory (a) — block memory transfers (vector loads and
stores).

Vector I+L (b) — integer and logical vector instructions.

Vector Float (c) — vector floating point instructions (additions,
multiplications and reciprocals).

Jump/Special (d) — branch, conditional, and special instructions.
Scalar FU (e) — scalar functional unit instructions.

Scalar memory (f) — scalar register load and store instructions.
% ' Vectorization — percent of program instructions that were

vector instructions, calculated by

.. a+b+c
% Vectorization = 100 atbrotdtott
Avg Len-I+L — average vector length of all integer/logical
vector operations.
Avg Len-Float — average vector length of all floating point

vector operations.
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12

No fpp or KAP
Name Block Memory| Vector i+L | Vector Float Jump/Speclal| Scalar FU__|Scalar Memoryle Vectorizatiof Avg Len - +L vg Len - Floal
1 |NASO1 22,605.84 1,329.68 20,970.61 174.16 2,671.86 44.32 93.95 56.45 55.65
2 |NASO02 6,825.11 1,061.12 8,162.30 134.02 3,210.56 399.56 81.07 36.89 36.39
3 |NASO03 11,473.48 210.99 12,069.70 189.62 15,123.91 650.51 59.81 63.92 8.69
4 INAS04 11,527.01 10.15 13,279.80 130.65 13,580.77 583.98 63.45 63.63 11.11
5 INASO5 28,135.01 309.18 28,168.13 408.05 4,039.01 140.54 92.50 45.18 55.05
6 |NASO06 12,688.95 1,028.85 11,931.80 120.50 1,088.12 21.71 95.42 61.87 60.54
7 _INASO7 994.87 141.72 1,404.00 252.49 1,389.07 96.86 59.37 14.22 54.34
8 [INASO8 30,981.63 17,298.18 50,747.70 439.49 3,069.82 192.07 96.40 63.78 63.70
9 |[NASO09 15,157.57 1,852.70 17,494.90 286.87 4,829.47 67.54 86.94 29.75 29.69
10 INAS10 101,085.56 17,542.45 77,198.10 748.87 8,269.73 65.40 95.57 63.35 58.79
11 IMFLOP90 336.34 61.21 179.30 29.72 265.92 61.09 61.79 35.32 26.85
12 [NASKERN 2,146.22 121.40 2,220.50 24.37 263.61 6.84 93.84 58.83 53.01
13 JADM 665.13 125.24 393.70 55.69 1,492.75 149.13 41.09 25.98 6.55
14 |ARC2D 1,945.29 275.99 2,234.00 175.52 276.97 2.87 90.73 55.82 52.57
15 |BDNA 649.56 363.64 1,174.00 28.86 211.85 22.48 89.26 43.74 50.59
16 |DYFESM 814.33 308.01 520.80 51.18 451.37 19.25 75.90 33.90 17.98
17 |FLO52 715.50 38.58 639.70 17.69 162.84 3.54 88.33 46.33 40.40
18 |[MDG 2,656.14 1,798.54 2,251.50 475.15 7,057.86 1,281.92 43.21 7.88 5.84
19 |MG3D 10,611.01 37.52 9,622.80 161.39 24,547.00 806.65 44.27 59.95 22.96
20 |OCEAN 1,819.07 8.99 967.10 67.74 2,831.54 428.48 45.65 61.05 47.08
21 |QCD 355.66 0.91 3.50 71.47 1,436.67 160.56 17.75 7.31 18.00
22 |SPEC77 1,628.45 436.93 1,783.40 196.65 2,749.68 123.18 55.63 17.02 12.14
23 |SPICE 42.16 2.12 4.10 29.44 263.90 89.26 11.23 12.78 1.94
24 |[TRACK 65.90 3.4 6.80 45.62 415.06 72.35 12.49 13.24 5.07
25 |TRFD 654.44 6.02 429.30 41.65 423.42 11.82 69.56 21.38 22.29
Average 10,663.21 1,774.54 10,554.30 174.27 4,004.91 220.08 66.61 39.98 32.69
Minimum 42.16 0.91 3.50 17.69 162.84 2.87 11.23 7.31 1.94
Maximum 101,085.56 17,542.45 77,198.10 748.87 24,547.00 1,281.92 96.40 63.92 63.70
Standard Dev. 20,894.29 4,741.35 18,184.76 178.78 5,857.15 312.86 27.21 20.40 20.99
Total 266,580.23 44,363.52] 263,857.54 4,366.86{ 100,122.76 5,501.91 1,665.21 999.57 817.22

]




€S

Vector fpp
Name Block Memory| Vector l+L | Vector Float Jump/Special| Scalar FU__[Scalar Memorys> Vectorizatios Avg Len - I+L Avg Len - Floa
1 |NASO1 22,606.33 1,334.66 20,973.37 176.19 2,635.72 45.72 94.22 56.17 55.65
2 |NASQ2 6,893.33 1,077.45 8,184.40 127.75 3,121.14 385.24 81.64 36.93 36.28
3 |NASO03 13,553.08 213.58 13,1562.50 108.74 10,414.66 95.12 71.71 63.14 10.44
4 |NAS04 12,444.51 10.15 14,328.40 79.86 9,528.29 59.68 73.48 63.63 11.82
5 INASO05 28,216.21 277.54 28,094.15 329.84 3,685.36 102.85 93.22 48.95 55.86
6 [NASO06 12,686.51 1,047.96 12,086.20 121.98 109.75 24.28 99.02 61.87 60.55
7 |NAS07 9,949.20 141.72 1,404.10 252.48 1,388.93 96.85 86.86 14.22 54.34
8 |NAS08 30,725.18 17,137.00 50,744.70 430.40 3,027.39 190.78 96.43 63.80 63.72
9 |NAS09 15,113.17 1,852.84 17,541.20 278.06 5,871.44 88.68 84.69 29.75 28.96
10 |[NAS10 101,064.42 17,542.45 77,199.00 748.48 8,248.77 263.14 95.48 63.35 58.79
11 [MFLOP90 330.92 91.95 191.60 33.80 249.42 50.91 64.78 35.61 25.80
12 |[NASKERN 2,148.68 121.09 2,221.10 25.69 243.02 4.87 94.26 58.80 53.01
13 |ADM 634.64 64.30 414.50 52.14 1,201.07 121.27 44.75 22.49 7.27
14 |ARC2D 2,095.67 275.96 2,249.00 15.56 223.73 1.41 95.05 57.27 55.89
15 |BDNA 632.18 362.54 1,170.20 28.61 210.40 22.15 89.24 43.69 50.54
16 |DYFESM 783.05 290.08 507.40 49.48 434.16 20.09 75.83 33.51 18.04
17 [FLO52 716.88 39.02 639.70 17.56 161.23 3.50 88.45 46.34 40.45
18 MG 2,656.29 1,798.54 2,251.40 475.85 7,068.57 1,281.89 43.18 7.88 5.84
19 [MG3D 11,016.24 37.52 9,634.40 281.46 25,549.66 798.00 43.72 60.36 22.48
20 |OCEAN 1,688.84 21.33 918.10 105.52 1,609.80 679.15 52.33 50.13 41.42
21 | QCD 355.68 1.35 5.34 71.33 1,436.76 160.53 17.84 17.89 17.97
22 |SPEC77 2,207.33 315.57 1,807.40 175.95 2,701.78 97.49 59.27 18.22 14.62
23 |SPICE 42.06 1.97 4.13 29.20 264.31 89.25 11.17 12.14 1.94
24 |TRACK 65.67 3.41 6.77 45.52 411.28 72.34 12.54 13.25 5.07
25 |TRFD 657.46 8.97 433.10 40.15 423.19 12.60 69.79 16.18 22.10
Average 11,171.34 1,762.76 10,646.49 164.06 3,604.79 190.71 69.56 39.82 32.75
Minimum 42.06 1.35 4.13 15.56 109.75 1.41 11.17 7.88 1.94
Maximum 101,064.42 17,542.45 77,199.00 748.48 25,549.66 1,281.89 99.02 63.80 63.72
Standard Dev. 20,784.05 4,721.43 18,195.26 178.95 5,533.09 302.49 27.31 19.84 20.83
Total 279,283.55 44,068.94| 266,162.16 4,101.60 90,119.83 4,767.79 1,738.94 995.57 818.85




9¢

fpp + 4 CPUs
Name Block Memory! Vector l+L | Vector Float |Jump/Special] Scalar FU_[Scalar Memoryle Vectorizatiof Avg Len - 1+L Avg Len - Floa
1_|NASO1 22,785.52 1,438.00 20,942.68 262.74 3,091.86 136.51 92.83 56.28 55.48
2 |NAS02 7,590.90 1,080.15 8,258.30 240.43 3,657.10 539.26 79.61 35.87 36.41
3 |NAS03 13,553.49 216.09 13,152.50 11117 10,427.81 95.89 71.68 63.01 10.44
4 [NAS04 12,445.25 10.65 14,328.80 80.43 9,533.28 59.74 73.47 61.79 11.82
§ |NAS0S 33,989.97 514.76 28,251.60 496.43 5,030.35 380.96 91.40 39.37 §5.09
6 |NAS06 12,721.25 1,054.51 12,087.48 161.85 1,415.53 53.52 94.07 61.28 60.54
7 _|NAS07 991.90 142.03 1,401.22 286.37 1,470.41 102.53 57.69 14.23 54.38
8 |NAS08 31,304.08 17,408.19 50,779.61 469.94 3,420.54 198.72 96.05 63.78 63.72
9 |NASO09 15,182.41 1,858.36 17,389.40 359.66 6,320.82 244.83 83.25 29.68 29.70
10 [NAS10 101,386.34 156,180.61 79,446.31 1,238.45 10,158.02 486.91 94.28 54.09 60.57
11 [MFLOP90 6,387.46 710.17 602.10 1,306.45 10,450.27 1,808.81 36.21 11.06 12.42
12 [NASKERN 2,152.17 122.28 2,220.80 33.20 273.85 12.33 93.37 57.55 53.01
13 |JADM 642.49 65.17 404.80 79.32 1,417.74 169.54 40.03 22.35 6.30
14 |ARC2D 1,967.68 276.30 2,234.00 25.47 327.83 10.68 92.48 55.66 52.78
15 |BDNA 659.90 363.11 1,170.80 37.82 242.82 24.75 87.78 43.60 50.48
16 |[DYFESM 785.29 290.22 507.40 51.47 468.80 35.09 74.03 33.49 18.04
17 [FLO52 721.97 39.40 639.00 20.51 166.07 4.43 88.00 45.50 40.44
18 |MDG 2,656.44 1,798.70 2,251.60 479.34 7,093.67 1,311.97 43.01 7.88 5.84
19 |MG3D 10,662.46 §6.10 9,226.22 772.07 28,698.05 1,222.10 39.39 58.10 21.78
20 |OCEAN 968.77 14.05 2,770.20 176.13 3,291.72 1,275.78 44.17 41.61 36.54
21 |QCD 359.59 1.37 3.54 72.63 1,455.33 165.50 17.71 18.21 17.87
22 |SPEC77 2,191.80 3156.97 1,807.40 198.83 3,100.53 168.77 55.51 18.27 14.62
23 |SPICE 42.07 1.97 4.13 31.64 269.24 89.29 10.99 12.13 1.94
24 |TRACK 65.69 3.42 6.77 47.89 416.07 72.46 12.39 13.24 5.07
25 |TRFD 657.57 9.97 433.10 47.68 479.95 70.24 64.80 17.44 22.10
Average 11,314.90 1,718.86 10,812.79 283.52 4,503.11 349.22 65.37 37.42 31.90
Minimum 42.07 1.37 3.54 20.51 166.07 4.43 10.99 7.88 1.94
Maximum 101,386.34 17,408.19 79,446.31 1,306.45 28,698.05 1,808.81 96.05 63.78 63.72
Standard Dev. 21,115.58 4,434.35 18,501.01 353.63 6,150.35 499.34 27.82 19.59 21.10
Total 282,872.47 42,971.56| 270,319.76 7,087.92] 112,677.66 8,730.61 1,634.20 935.47 797.38




LS

fpp + 8 CPUs
Name Block Memory| Vector l+L | Vector Float |Jump/Speciall Scalar FU |Scalar Memory, Vectorizatiof Avg Len - 1+ Avg Len - Floa
1 _[NASO1 22,759.87 1,438.55 20,942.67 253.41 3,015.02 128.05 93.00 56.27 55.48
2 |NAS02 7,646.46 1,081.84 8,258.30 224,53 3,416.16 531.10 80.28 35.90 36.41
3 |NAS03 13,554.40 216.09 13,152.44 11.32 10,427.81 95.92 71.88 63.01 10.44
4 INAS04 12,445.26 10.65 14,328.70 80.36 9,631.84 59.74 73.47 61.79 11.82
5 |NAS05 34,368.14 514.76 28,251.59 504.50 5,068.18 393.26 91.37 39.37 55.09
6 |NAS06 12,725.22 1,055.50 12,087.30 152.56 1,343.15 48.16 94.37 61.28 60.54
7 _|[NASO7 991.97 142.03 1,401.22 280.26 1,458.21 102.53 57.93 14.23 54.38
8 {NAS08 31,998.23 17,502.29 50,779.61 480.93 3,516.39 202.13 95.98 63.78 63.72
9 {NAS09 15,183.11 1,858.36 17,389.40 343.04 6,228.11 217.51 83.53 29.68 29.70
10 |[NAS10 101,486.14 17,615.24 77,010.41 1,342.00 10,431.59 521.81 94.10 62.75 58.72
11 [MFLOP90 5,694.92 305.72 332.40 678.34 5,946.89 1,069.48 45.15 12.85 15.46
12 INASKERN 2,148.28 122.28 2,220.80 33.91 82.14 14.21 97.18 57.55 53.01
13 |JADM 642.30 65.17 404.80 102.13 1,463.51 169.66 39.06 22.35 6.30
14 |ARC2D 1,967.27 276.30 2,234.00 28.41 361.91 18.84 91.63 55.66 52.78
15 |BDNA 664.31 363.10 1,170.80 37.87 243.18 26.29 87.73 43.60 50.48
16 |DYFESM 785.26 290.22 507.40 51.70 472.20 35.16 73.90 33.49 18.04
17 [FLO52 719.08 39.40 639.00 20.93 172.68 5.29 87.54 45.50 40.44
18 (MG 2,656.45 1,432.81 2,617.47 479.34 7,091.52 1,311.79 43.02 6.27 6.79
19 IMG3D 10,664.29 56.10 9,226.22 767.51 28,687.57 1,221.91 39.40 58.10 21.78
20 |OCEAN 968.52 14.05 277.00 176.56 3,286.68 1,274.33 21.00 41.61 36.54
21 |QCD 359.59 1.37 3.54 73.09 1,456.22 165.51 17.70 18.21 17.97
22 |SPEC77 2,196.83 320.17 1,807.40 199.69 3,106.75 159.86 55.51 18.22 14.62
23 [SPICE 42.07 1.97 4.13 30.05 266.08 89.29 11.11 12.13 1.94
24 [TRACK 65.69 3.42 6.77 47.40 415.09 72.46 12.42 13.24 5.07
25 [TRFD 657.57 9.97 433.10 48.04 480.58/ 70.24 64.76 17.44 22.10
Average 11,335.65 1,789.49 10,619.46 257.91 4,318.78 320.18 64.92 37.77 31.98
Minimum 42.07 1.37 3.54 11.32 82.14 5.29 11.11 6.27 1.94
Maximum 101,486.14 17,615.24 77,010.41 1,342.00 28,687.57 1,311.79 97.18 63.78 63.72
Standard Dev. 21,184.33 4,775.26 18,178.85 312.40 6,048.14 426.24 28.78 19.97 20.83
Total 283,391.23 44,737.35] 265,486.47 6,447.87| 107,969.46 8,004.53 1,623.02 944.28 799.62




8¢

Vector KAP
Name Block Memory| Vector L | Vector Float | Jump/Special|l Scalar FU |Scalar Memory Vectorizatiof Avg Len - 1+L Avg Len - Floal
1 _[NASO1 22,604.02 1,377.835 20,926.33 176.42 2,533.67 40.96 94.23 58.47 55.43
2 |NAS02 7,192.86 1,053.85 86,290.30 110.04 2,119.91 73.74 97.62 35.39 35.29
3 _[NASO03 11,472.17 210.99 12,069.70 97.90 10,668.81 649.22 67.54 63.92 47.96
4 |NAS04 11,526.91 10.15 13,279.90 79.04 9,932.78 '583.89 70.08 63.63 49.83
5§ |NASO5 28,328.37 107.52 28,005.40 397.89 3,797.60 131.38 92.88 59.72 55.68
6 |NAS06 12,689.62 1,047.96 12,086.22 123.01 1,056.81 21.92 95.55 61.84 60.54
7_|NAS07 994.92 141.72 1,404.10 251.73 1,390.13 97.32 59.36 14.22 54.32
8 INASo08 31,070.22 17,762.85 50,867.40 417.46 2,973.64 191.81 96.53 63.78 63.70
8 |NASO0S 16,157.61 1,852.70 17,494.90 288.63 4,698.57 68.47 87.22 29.75 29.56
10 [NAS10 101,114.12 17,542.35 77,198.00 748.95 8,302.46 265.50 95.46 63.35 58.97
11 |[MFLOP90 307.28 60.26 182.10 27.91 238.00 58.17 62.91 34.31 25.35
12 |NASKERN 2,146.77 121.49 2,220.80 23.94 22.59 4.89 98.87 58.82 53.01
13 |ADM 651.73 125.27 406.30 56.14 1,347.50 146.67 43.29 25.97 5.59
14 |ARC2D 1,945.44 275.98 2,234.00 17.38 269.50 2.98 93.89 55.81 52.78
15 |BDNA 649.68 363.77 1,174.20 29.00 212.97 22.62 89.21 43.74 50.59
16 |DYFESM 795.27 294.75 509.40 51.83 457.55 21.79 75.07 33.64 17.78
17 |FLO52 719.98 49.35 640.70 14.98 148.18 2.62 89.48 42.89 40.41
18 |[MDG 2,664.62 1,800.41 2,262.20 475.79 7,069.77 1,280.60 43.25 7.82 5.71
19 IMG3D 10,750.49 1,121.26 9,949.80 192.52 26,922.97 1,009.14 43.69 57.23 23.32
20 |OCEAN 1,825.24 15.09 973.20 67.60 2,796.03 428.44 46.08 62.20 47.16
21 |QCD 355.68 0.92 3.54 71.47 1,438.41 160.56 17.74 7.41 18.00
22 |SPEC77 1,634.42 438.49 1,789.30 203.62 3,169.95 111.07 52.57 11.15 11.46
23 |SPICE 42.62 1.97 4.13 27.40 257.98 89.26 11.51 12.11 1.94
24 |TRACK 65.70 3.42 6.43 45.32 415.45 72.52 12.41 13.29 5.14
25 |TRFD 604.85 5.56 397.20 42.04 391.70 11.33 69.36 19.76 20.62
Average 10,692.42 1,831.42 13,695.02 160.90 3.754.14 229.41 68.23 39.24 34.78
Minimum 42.62 0.92 3.54 14.98 22.59 2.62 11.51 7.41 1.94
Maximum 101,114.12 17,762.85 86,290.30 748.95 26,922.97 1,280.60 98.87 63.92 63.70
Standard Dev. 20,908.84 4,796.00 23,649.49 185.29 5,873.42 333.83 28.07 21.27 20.44
Total 267,310.60 45,785.43] 342,375.55 4,038.01 92,632.93 5,546.87 1,705.80 1,000.22 890.14

]



6S

KAP + 4 CPUs
Name Block Memory| Vector I+L | Vector Float | Jump/Special] Scalar FU !Scalar Memoryo Vectorizatio) Avg Len - |+L. Avg Len - Floa]
1 INASO1 23,405.73 1,510.80 20,788.44 378.79 4,294.02 362.00 90.08 56.30 53.50
2 |NASO02 7,407.97 1,078.27 8,730.40 214.99 2,584.83 153.87 85.36 34.85 35.32
3 |NAS03 11,472.62 211.85 12,069.71 99.43 10,681.90 649.54 67.51 63.83 47.96
4 [NAS04 11,5626.94 10.16 13,279.86 79.56 9,960.53 583.91 70.02 63.54 49.83
5 INASO05 35,922.97 432.74 28,057.64 2,218.41 12,250.48 986.29 80.65 22.93 55.69
6 [NASO06- 12,720.63 1,048.14 12,086.37 177.75 1,356.27 44.40 94.25 61.67 60.54
7 _|NASO07 994.87 141.72 1,404.08 276.88 1,439.90 97.28 58.34 14.22 54.34
8 |NASO08 32,810.15 18,492.00 51,266.90 719.34 4,5681.13 202.78 94.91 46.45 59.10
9 (NAS09 15,661.48 1,857.85 17,494.10 527.59 5,926.96 255.90 83.92 29.68 29.53
10 |NAS10 101,368.45 17,562.38 77,197.21 1,089.18 9,648.33 352.35 94.65 63.07 56.82
11 |MFLOP90 307.66 61.52 182.33 29.32 246.56 58.82 62.23 33.93 25.30
12 [NASKERN 2,125.19 124.10 2,197.90 66.48 490.55 40.09 88.16 55.67 48.70
13 |ADM 763.65 136.45 394.40 93.90 1,622.09 209.26 40.20 24.64 6.56
14 JARC2D 1,946.14 276.07 2,234.00 39.62 427.76 19.46 90.15 55.76 52.78
15 |BDNA 650.51 364.15 1,174.20 36.52 235.91 23.91 88.08 43.70 50.59
16 |{DYFESM 801.05 295.70 509.40 59.84 483.09 26.71 73.82 33.52 17.78
17 |[FLOS2 725.70 49.65 640.71 19.44 167.24 6.01 88.02 42.70 40.41
18 |[MOG 1,757.65 1,798.55 2,251.55 421.49 5,866.33 1,115.07 43.96 7.88 5.84
19 |MG3D 10,760.54 1,140.17 9,949.84 454.37 27,520.64 1,036.86 42.96 57.20 23.32
20 |OCEAN 1,840.21 19.77 981.50 78.79 2,838.50 432.26 45.90 57.89 47.48
21 [QCD 357.62 0.92 3.54 73.51 1,458.07 165.44 17.58 7.41 18.00
22 [SPEC77 1,707.56 468.28 1,797.18 256.61 3,402.62 124.67 51.22 11.67 11.45
23 |SPICE 42.81 2.36 4.13 28.39 260.40 89.38 11.53 13.94 1.94
24 |TRACK 65.58 3.43 6.43 46.77 418.20 72.59 12.31 13.29 5.14
25 |TRFD 605.11 5.61 397.20 42.47 395.02 11.46 69.18 19.72 20.62
Average 11,109.95 1,883.71 10,603.96 301.18 4,342.29 284.81 65.80 37.41 35.14
Minimum 42.81 0.92 3.54 19.44 167.24 6.01 11.563 7.41 1.94
Maximum 101,368.45 18,492.00 77,197.21 2,218.41 27,520.64 1,116.07 94.91 63.83 60.54
Standard Dev. 21,377.84 4,804.82 18,221.81 475.98 6,081.50 336.45 26.34 19.90 19.82
Total 277,748.80 47,092.63] 265,099.02 7,5629.44| 108,557.33 7,120.31 1,644.99 935.36 878.54

]



09

KAP + 8 CPUs I
Name Block Memory| Vector I+L | Vector Float |Jump/Special| Scalar FU |Scalar Memory, Vectorizatiof Avg Len - I+L Avg Len - Floa
1 _[NASO1 23,424.27 1,500.71 20,788.45 446.20 4,606.31 403.06 89.34 66.37 63.50
2 |NASO2 7,508.13 1,079.31 8,732.00 181.21 2,459.69 139.56 86.17 34.85 35.32
3 |NAS03 11,472.70 211.85 12,069.71 100.38 10,683.18 649.58 67.51 63.83 47.96
4 [NAS04 11,526.93 10.16 13,279.90 79.36 9,960.36 583.91 70.02 63.54 49.83
5 |NASO0S 35,728.36 432.67 28,057.57 1,966.44 11,098.02 890.48 82.15 22.93 55.69
6 |NASO06 12,718.37 1,047.58 12,086.28 211.92 1,489.88 52.61 93.64 61.67 60.54
7 _{NASO7 994.87 141.72 1,404.08 279.47 1,445.11 97.29 58.24 14.22 54.34
8 |NASo08 32,091.96 18,522.38 51,266.94 742.57 4,601.10 201.20 94.84 46.48 59.10
9 |NAS09 15,706.60 1,857.85 17,494.20 468.83 5,620.43 233.03 84.72 29.68 29.54
10 |[NAS10 101,369.08 17,562.38 77,197.22 1,014.14 9,531.94 357.04 94.73 63.07 56.82
11 |[MFLOP90 314.31 61.53 182.34 29.88 248.25 69.00 62.34 33.93 25.30
12 |NASKERN 2,149.10 124.10 2,197.90 51.74 436.23 35.54 89.52 55.67 48.70
13 |ADM 893.13 136.45 394.40 100.83 1,658.71 213.08 41.92 24.64 6.56
14 |ARC2D 1,947.62 276.07 2,234.00 34.84 384.08 16.10 91.11 55.76 52.78
15 |BDNA 652.00 364.15 1,174.20 38.19 237.52 23.52 87.98 43.70 50.59
16 |DYFESM 812.57 285.70 509.40 55.70 470.72 25.66 74.56 33.52 17.78
17 [FLO52 727.16 49.65 640.71 22.86 180.16 7.10 87.09 42.71 40.41
18 |[MG 2,664.48 1,800.14 2,262.10 477.11 7,074.71 1,283.10 43.23 7.82 5.71
19 |MG3D 10,760.45 1,140.17 9,949.84 1,476.87 29,569.47 1,037.89 40.51 67.20 23.32
20 |OCEAN 1,837.76 19.77 981.50 77.09 2,837.16 432.18 45.90 57.89 47.48
21 )QCD 357.62 0.92 3.54 72.71 1,456.49 165.44 17.60 7.41 18.00
22 |SPEC77 1,708.61 466.22 1,797.18 262.02 3,412.95 124.27 51.11 11.56 11.45
23 |SPICE 42.82 2.36 4.13 28.24 260.18 89.41 11.54 13.94 1.94
24 [TRACK 65.57 3.43 6.43 49.29 423.26 72.60 12.15 13.29 5.14
25 |TRFD 605.13 5.61 397.20 43.19 395.92 11.54 69.10 19.72 20.62
Average 11,123.18 1,884.51 10,604.45 332.44 4,421.67 288.17 65.88 37.42 35.14
Minimum 42.82 0.92 3.54 22.86 180.16 7.10 11.54 7.41 1.94
Maximum 101,369.08 18,522.38 77,197.22 1,966.44 29,569.47 1,283.10 94.84 63.83 60.54
Standard Dev. 21,319.57 4,899.17 18,221.60 491.12 6,367.26 348.48 26.50 19.91 19.82
Total 278,079.62 47,112.86] 265,111.22 8,311.08] 110,541.83 7,204.19 1,647.04 935.40 878.42

]
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Vector KAP + fpp
Name Block Memory| Vector i+l | Vector Float |Jump/Speciall Scalar FU [Scalar Memorws Vectorizatiof Avg Len - |+L Avg Len - Floaf
1 |NASO1 22,607.38 1,377.35 20,927.91 181.33 2,541.11 44.24 94.20 58.47 55.43
2 |NASO02 7,258.07 1,079.34 8,651.40 107.30 2,081.97 61.43 88.30 35.46 35.22
3 INAS03 13,524.50 213.568 13,152.50 51.76 6,495.86 90.23 80.20 63.14 48.92
4 |NAS04 12,444.42 10.15 14,328.40 28.25 5,882.73 59.60 81.77 63.63 50.65
5 [INASOS 28,370.82 388.57 28,086.23 333.38 3,713.42 103.47 93.20 53.19 55.72
6 |NAS06 12,464.33 1,047.98 12,086.22 122.97 1,055.15 21.91 95.62 61.87 60.55
7 [NAS(O7 994.92 141.72 1,404.10 251.73 1,390.13 97.32 59.36 14.22 54.32
8 |NAS08 30,814.16 17,605.66 50,864.40 408.74 2,934.42 191.01 96.56 63.80 63.72
9 |NAS09 15,088.68 1,745.32 17,541.20 258.69 4,481.34 66.53 87.73 33.94 30.16
10 {NAS10 100,761.14 17,501.18 77,025.90 746.70 8,262.34 262.53 95.47 63.35 58.79
11 |MFLOPQ0 326.44 81.40 188.78 36.78 250.09 52.26 63.76 36.90 25.27
12 |NASKERN 2,071.35 121.08 2,221.00 19.44 221.96 5.17 94.71 58.80 53.01
13 |ADM 647.44 64.33 442.30 52.06 1,188.40 117.45 45.94 22.47 6.23
14 |ARC2D 2,093.39 275.97 2,249.00 15.69 224.62 1.56 95.02 57.26 55.89
15 |BDNA 632.24 362.62 1,170.40 28.88 213.82 22.48 89.09 43.68 50.54
16 |DYFESM 792.70 290.95 506.40 52.44 465.67 23.79 74.58 33.53 17.73
17 |[FLOS2 721.33 49.87 640.70 14.88 146.46 2.59 89.60 42.55 40.45
18 |[MG 2,664.67 1,800.41 2,262.20 476.53 7,069.03 1,280.60 43.25 7.82 5.71
19 |MG3D 11,115.20 1,121.26 9,961.50 305.63 26,731.65 1,110.81 44.09 57.24 22.76
20 |OCEAN 1,645.15 29.54 787.90 102.59 2,216.14 683.78 45.06 53.25 48.49
21 |QCD 335.67 1.36 3.54 71.35 1,437.06 160.56 16.95 18.04 17.98
22 |SPEC77 2,119.98 304.49 1,767.00 174.86 2,478.41 113.79 60.24 17.84 15.03
23 |SPICE 42.63 1.97 4.13 27.40 257.98 89.26 11.51 12.12 1.94
24 |TRACK 65.41 3.42 6.43 45.23 411.48 72.52 12.45 13.29 5.14
25 [TRFD 607.87 8.51 400.90 40.54 391.20 12.11 69.62 15.36 20.46
Average 10,808.40 1,825.12 10,667.22 1568.21 3,301.70 189.88 69.13 40.05 36.00
Minimum 42.63 1.36 3.54 14.88 146.46 1.56 11.51 7.82 1.94
Maximum 100,761.14 17,605.66 77,025.90 746.70 26,731.65 1,280.60 96.56 63.80 63.72
Standard Dev. 20,838.01 4,766.68 18,179.25 180.62 5,434.37 332.77 27.68 19.93 20.44
Total 270,209.90 45 628.05| 266,680.44 3,955.15 82,542.44 4,747.00 1,728.19 1,001.22 900.11

]
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KAP + fpp + 4 CPUs
Name Block Memory| Vector I+l | Vector Float |Jump/Special|l Scalar FU iScalar Memorws Vectorizatiod Avg Len - {+1. Avg Len - Floaj
1 |NASO1 23,329.36 1,507.20 20,788.44 385.72 4,329.26 366.22 89.98 56.34 53.50
2 |NASO02 6,986.70 1,085.74 8,277.90 263.38 4,036.32 552.99 77.11 34.40 35.26
3 |NASO03 13,521.51 216.09 13,152.50 56.83 6,519.20 94.58 80.13 63.01 48.92
4 [NAS04 12,445.17 10.65 14,328.80 28.84 5,886.17 59.66 81.76 61.79 50.65
§ |NASO05 35,776.44 4.20 28,057.70 1,954.16 11,101.50 893.85 82.07 22.90 55.69
6 |[NASO06 12,722.42 1,049.90 12,087.49 175.43 1,473.27 58.79 93.81 61.46 60.54
7 |NASO7 991.92 142.10 1,401.22 273.27 1,446.23 102.95 58.18 14.23 54.38
8 [NASO08 32,319.75 18,474.70 51,269.14 730.86 4,622.55 203.62 94.84 46.41 59.10
9 INASO09 15,594.18 1,858.01 17,494.20 456.42 5,677.34 200.23 84.86 29.68 29.54
10 [NAS10 101,458.67 17,604.68 77,038.66 1,635.97 11,162.19 507.94 93.65 62.60 56.76
11 |MFLOPS0 332.56 83.55 189.54 40.15 276.33 58.12 61.79 36.34 25.18
12 JNASKERN 2,130.38 124.10 2,198.10 45.01 395.05 32.70 90.40 55.67 48.70
13 |ADM 885.18 136.45 459.90 93.02 1,570.83 192.45 44.39 24.64 7.05
14 |ARC2D 1,946.97 276.11 2,234.10 34.28 390.45 15.52 91.01 56.76 52.78
15 |BDNA 660.43 363.18 1,170.90 37.42 241.67 26.10 87.79 43.61 50.49
16 |DYFESM 800.16 295.83 509.40 63.12 510.47 38.38 72.40 33.51 17.78
17 |[FLO52 723.98 49.65 640.04 19.68 166.78 5.89 88.02 42.70 40.40
18 [MDG 2,664.86 1,800.54 2,262.30 479.12 7,097.44 1,307.19 43.09 7.82 5.71
19 [MG3D 10,764.47 1,140.20 9,652.92 1,074.13 30,528.43 1,5631.28 39.31 57.19 22.13
20 |OCEAN 1,243.23 32.91 439.93 161.88 2,989.18 1,104.47 28.74 52.04 43.79
21 {QCD 357.64 1.36 335.40 73.18 1,456.42 165.51 29.06 18.19 18.00
22 |SPEC77 1,707.56 466.09 1,797.18 252.31 3,391.45 123.48 51.32 11.56 11.45
23 [SPICE 42.81 2.36 4.13 28.34 260.29 89.39 11.54 13.95 1.94
24 |TRACK 65.31 3.43 6.43 46.89 414.65 72.59 12.34 13.29 5.14
25 |TRFD 608.03 9.89 400.90 48.69 478.24 70.22 63.05 16.05 20.46
Average 11,203.19 1,869.56 10,643.89 338.28 4,252.87 314.96 66.02 37.41 35.01
Minimum 42.81 1.36 4.13 19.68 166.78 5.89 11.54 7.82 1.94
Maximum 101,458.67 18,474.70 77,038.66 1,954.16 30,528.43 1,531.28 94.84 63.01 60.54
Standard Dev. 21,366.03 4,903.36 18,215.94 508.57 6,367.78 433.16 26.58 19.08 19.80
Total 280,079.70 46,738.91] 266,097.22 8,457.10] 106,321.71 7,874.12 1,650.61 935.14 875.34




€9

KAP + fpp + 8 CPUs
Name Block Memory| Vector I+L | Vector Float |Jump/Speciall Scalar FU |{Scalar Memorvs Vectorizatiof Avg Len - |+L V\vg Len - Floa]
1 |NASO1 23,421.85 1,500.11 20,788.44 509.40 4,849.46 434.56 88.75 56.38 53.50
2 |NAS02 7,369.05 1,087.16 8,280.00 250.87 3,957.74 535.16 77.92 34.40 35.26
3 |NAS03 13,621.71 216.09 13,152.53 56.42 6,520.17 94.70 80.12 63.01 48.92
4 [INASO4 12,445.20 10.65 14,328.80 29.02 5,887.58 59.66 81.76 61.79 50.65
5 |NASO5 35,5617.46 434.14 28,057.63 2,236.09 12,214.47 986.02 80.57 22.90 55.69
6 |NAS06 12,724.11 1,050.47 12,087.52 236.85 1,655.565 54.78 93.33 61.46 60.54
7 INAS(7 991.92 142.10 1,401.22 276.96 1,454.06 102.96 58.03 14.23 54.38
8 [NAS08 32,663.93 18,454.50 51,269.14 1,034.02 5,226.76 205.53 94.06 46.39 59.10
9 |NAS09 15,662.36 1,858.00 17,493.30 458.28 5,571.90 213.92 84.87 29.68 29.50
10 |[NAS10 101,448.59 17,616.22 76,998.09 1,428.20 10,839.08 531.63 93.87 62.60 56.76
11 [MFLOP90 348.80 86.99 171.84 45.17 296.39 60.35 60.19 32.97 24.74
12 |NASKERN 2,137.33 124.10 2,198.10 46.03 401.40 33.14 90.27 55.67 48.70
13 |ADM 807.80 136.45 459.90 86.05 1,630.43 188.75 43.75 24.64 7.05
14 |ARC2D 1,947.09 276.11 2,234.10 29.73 337.38 10.97 92.18 55.76 52.78
15 |BDNA 665.19 363.19 1,170.90 37.70 241.79 24.81 87.85 43.61 50.49
16 |DYFESM 809.52 295.83 509.40 57.39 499.28 38.42 73.07 33.51 17.78
17 |FLO52 730.77 49.65 640.04 21.24 172.83 6.44 87.63 42.70 40.40
18 [MDG 2,664.87 1,800.54 2,262.30 479.07 7,097.26 1,307.19 43.10 7.82 5.71
19 IMG3D 10,764.37 1,140.20 9,662.92 1,326.42 31,025.19 1,631.16 38.77 57.19 22.13
20 |OCEAN 1,244.67 32.91 439.93 162.52 2,990.64 1,104.55 28.74 52.04 43.79
21 |]QCD 357.65 1.36 3.54 72.95 1,455.98 165.51 17.63 18.19 18.00
22 [SPEC77 1,716.88 465.24 1,797.18 252.87 3,391.75 123.07 51.37 11.55 11.45
23 |SPICE 42.87 2.36 4.13 28.28 260.21 89.39 11.55 13.95 1.94
24 [TRACK 65.33 3.43 6.43 46.85 414.58 72.60 12.34 13.29 5.14
25 |TRFD 608.20 9.89 400.90 48.45 477.76 70.22 63.08 16.05 20.46
Average 11,227.10 1,886.31 10,628.33 370.27 4,346.79 321.82 65.39 37.27 34.99
Minimum 42.87 1.36 3.54 21.24 172.83 6.44 11.565 7.82 1.94
Maximum 101,448.59 18,454.50 76,998.09 2,236.09 31,025.19 1,631.16 94.06 63.01 60.54
Standard Dev. 21,366.43 4,895.95 18,218.12 557.46 6,495.46 439.30 27.31 19.11 19.81
Total 280,677.50 47,157.68{ 265,708.28 9,256.83| 108,669.64 8,045.49 1,634.79 931.78 874.86




Appendix E — Effective Parallel Fraction

This appendix gives the effective parallel fraction for each of the
parallel program executions. The formula to compute the parallel
fraction is obtained by solving Amdahl's Law, giving

n T”

-0 T

Ty

%p = 100

where Tn and Tv are the elapsed times of the n-CPU and vector
executions, respectively.
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Benchmark fpp + 4 fpp + 8 KAP + 4 KAP + 8 KAP + fpp + 4 | KAP +fpp + 8
Name %p %p % p %P %p %p

1 [NASO1 63.11 59.95 32.41 33.81 31.75 33.66
2 |NASO2 28.90 16.03 -1.97 -1.37 -8.99 -4.80
3 [NASO03 4.95 5.96 1.45 2.67 6.06 7.30
4 [NAS04 5.29 5.27 2.89 2.37 7.37 6.66
5 |NAS05 10.73 11.61 -10.08 -22.73 -15.19 -25.89
6 _[NASO06 87.89 87.84 86.92 87.00 88.33 88.05
7 INAS07 4.03 3.39 2.42 1.37 0.86 0.44
8 |NAS08 81.35 84.11 81.37 83.27 85.78 84.66
9 [NASO09 75.81 74.82 65.96 63.38 64.39 61.45
10 [NAS10 78.89 75.63 60.59 57.71 78.79 75.93
11 |MFLOP90 5.92 8.17 -3.58 -0.64 3.42 -0.46
12 |NASKERN 41.99 40.45 58.57 52.35 64.83 56.32
13 |ADM -34.96 -21.55 -0.14 -5.67 -14.71 -15.07
14 |[ARC2D 75.64 73.67 80.16 67.04 77.91 76.11
15 |BDNA 10.43 2.55 7.75 5.67 5.52 2.44
16 [DYFESM 12.83 14.29 -0.30 2.76 23.82 19.70
17 [FLO52 76.47 68.28 75.44 67.11 69.22 55.87
18 |MDG 20.16 0.84 14.56 2.48 20.66 0.21
19 [MG3D 9.86 8.84 5.53 5.39 -2.06 -0.93
20 {OCEAN -72.98 -60.59 13.10 11.72 -34.28 -27.38
21 ]QCD -0.25 -1.25 2.22 0.93 -1.73 -2.30
22 [SPEC77 -0.20 -0.72 25.47 25.16 12.53 14.04
2 3 |SPICE -21.77 -19.66 -11.26 -0.95 2.19 -0.35
24 |TRACK -9.40 -7.65 4.61 4.84 3.24 1.95
25 (TRFD -67.77 -60.25 0.67 -5.01 -81.06 -70.36

Average 19.48 18.80 23.79 21.63 19.55 17.49

Minimum -72.98 -60.59 -11.26 -22.73 -81.06 -70.36

Maximum 87.89 87.84 86.92 87.00 88.33 88.05

Standard Dev. 44.51 41.63 33.17 32.18 42.04 39.89

Total 336.47 346.29 575.38 504.42 398.33 348.20




